numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/ztrevc3.f | 21178B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
*> \brief \b ZTREVC3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZTREVC3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, * $ LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO) * * .. Scalar Arguments .. * CHARACTER HOWMNY, SIDE * INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N * .. * .. Array Arguments .. * LOGICAL SELECT( * ) * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZTREVC3 computes some or all of the right and/or left eigenvectors of *> a complex upper triangular matrix T. *> Matrices of this type are produced by the Schur factorization of *> a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. *> *> The right eigenvector x and the left eigenvector y of T corresponding *> to an eigenvalue w are defined by: *> *> T*x = w*x, (y**H)*T = w*(y**H) *> *> where y**H denotes the conjugate transpose of the vector y. *> The eigenvalues are not input to this routine, but are read directly *> from the diagonal of T. *> *> This routine returns the matrices X and/or Y of right and left *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an *> input matrix. If Q is the unitary factor that reduces a matrix A to *> Schur form T, then Q*X and Q*Y are the matrices of right and left *> eigenvectors of A. *> *> This uses a Level 3 BLAS version of the back transformation. *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE *> \verbatim *> SIDE is CHARACTER*1 *> = 'R': compute right eigenvectors only; *> = 'L': compute left eigenvectors only; *> = 'B': compute both right and left eigenvectors. *> \endverbatim *> *> \param[in] HOWMNY *> \verbatim *> HOWMNY is CHARACTER*1 *> = 'A': compute all right and/or left eigenvectors; *> = 'B': compute all right and/or left eigenvectors, *> backtransformed using the matrices supplied in *> VR and/or VL; *> = 'S': compute selected right and/or left eigenvectors, *> as indicated by the logical array SELECT. *> \endverbatim *> *> \param[in] SELECT *> \verbatim *> SELECT is LOGICAL array, dimension (N) *> If HOWMNY = 'S', SELECT specifies the eigenvectors to be *> computed. *> The eigenvector corresponding to the j-th eigenvalue is *> computed if SELECT(j) = .TRUE.. *> Not referenced if HOWMNY = 'A' or 'B'. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix T. N >= 0. *> \endverbatim *> *> \param[in,out] T *> \verbatim *> T is COMPLEX*16 array, dimension (LDT,N) *> The upper triangular matrix T. T is modified, but restored *> on exit. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= max(1,N). *> \endverbatim *> *> \param[in,out] VL *> \verbatim *> VL is COMPLEX*16 array, dimension (LDVL,MM) *> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must *> contain an N-by-N matrix Q (usually the unitary matrix Q of *> Schur vectors returned by ZHSEQR). *> On exit, if SIDE = 'L' or 'B', VL contains: *> if HOWMNY = 'A', the matrix Y of left eigenvectors of T; *> if HOWMNY = 'B', the matrix Q*Y; *> if HOWMNY = 'S', the left eigenvectors of T specified by *> SELECT, stored consecutively in the columns *> of VL, in the same order as their *> eigenvalues. *> Not referenced if SIDE = 'R'. *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> The leading dimension of the array VL. *> LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. *> \endverbatim *> *> \param[in,out] VR *> \verbatim *> VR is COMPLEX*16 array, dimension (LDVR,MM) *> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must *> contain an N-by-N matrix Q (usually the unitary matrix Q of *> Schur vectors returned by ZHSEQR). *> On exit, if SIDE = 'R' or 'B', VR contains: *> if HOWMNY = 'A', the matrix X of right eigenvectors of T; *> if HOWMNY = 'B', the matrix Q*X; *> if HOWMNY = 'S', the right eigenvectors of T specified by *> SELECT, stored consecutively in the columns *> of VR, in the same order as their *> eigenvalues. *> Not referenced if SIDE = 'L'. *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> The leading dimension of the array VR. *> LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. *> \endverbatim *> *> \param[in] MM *> \verbatim *> MM is INTEGER *> The number of columns in the arrays VL and/or VR. MM >= M. *> \endverbatim *> *> \param[out] M *> \verbatim *> M is INTEGER *> The number of columns in the arrays VL and/or VR actually *> used to store the eigenvectors. *> If HOWMNY = 'A' or 'B', M is set to N. *> Each selected eigenvector occupies one column. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of array WORK. LWORK >= max(1,2*N). *> For optimum performance, LWORK >= N + 2*N*NB, where NB is *> the optimal blocksize. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (LRWORK) *> \endverbatim *> *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER *> The dimension of array RWORK. LRWORK >= max(1,N). *> *> If LRWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the RWORK array, returns *> this value as the first entry of the RWORK array, and no error *> message related to LRWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup trevc3 * *> \par Further Details: * ===================== *> *> \verbatim *> *> The algorithm used in this program is basically backward (forward) *> substitution, with scaling to make the the code robust against *> possible overflow. *> *> Each eigenvector is normalized so that the element of largest *> magnitude has magnitude 1; here the magnitude of a complex number *> (x,y) is taken to be |x| + |y|. *> \endverbatim *> * ===================================================================== SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, $ VR, $ LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO) IMPLICIT NONE * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER HOWMNY, SIDE INTEGER INFO, LDT, LDVL, LDVR, LWORK, LRWORK, M, MM, N * .. * .. Array Arguments .. LOGICAL SELECT( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) INTEGER NBMIN, NBMAX PARAMETER ( NBMIN = 8, NBMAX = 128 ) * .. * .. Local Scalars .. LOGICAL ALLV, BOTHV, LEFTV, LQUERY, OVER, RIGHTV, SOMEV INTEGER I, II, IS, J, K, KI, IV, MAXWRK, NB DOUBLE PRECISION OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL COMPLEX*16 CDUM * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV, IZAMAX DOUBLE PRECISION DLAMCH, DZASUM EXTERNAL LSAME, ILAENV, IZAMAX, DLAMCH, $ DZASUM * .. * .. External Subroutines .. EXTERNAL XERBLA, ZCOPY, ZDSCAL, ZGEMV, $ ZLATRS, $ ZGEMM, ZLASET, ZLACPY * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCMPLX, CONJG, DIMAG, MAX * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) * .. * .. Executable Statements .. * * Decode and test the input parameters * BOTHV = LSAME( SIDE, 'B' ) RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV * ALLV = LSAME( HOWMNY, 'A' ) OVER = LSAME( HOWMNY, 'B' ) SOMEV = LSAME( HOWMNY, 'S' ) * * Set M to the number of columns required to store the selected * eigenvectors. * IF( SOMEV ) THEN M = 0 DO 10 J = 1, N IF( SELECT( J ) ) $ M = M + 1 10 CONTINUE ELSE M = N END IF * INFO = 0 NB = ILAENV( 1, 'ZTREVC', SIDE // HOWMNY, N, -1, -1, -1 ) MAXWRK = MAX( 1, N + 2*N*NB ) WORK(1) = MAXWRK RWORK(1) = MAX( 1, N ) LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 ) IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN INFO = -1 ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDT.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN INFO = -8 ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN INFO = -10 ELSE IF( MM.LT.M ) THEN INFO = -11 ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN INFO = -14 ELSE IF ( LRWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZTREVC3', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * * Use blocked version of back-transformation if sufficient workspace. * Zero-out the workspace to avoid potential NaN propagation. * IF( OVER .AND. LWORK .GE. N + 2*N*NBMIN ) THEN NB = (LWORK - N) / (2*N) NB = MIN( NB, NBMAX ) CALL ZLASET( 'F', N, 1+2*NB, CZERO, CZERO, WORK, N ) ELSE NB = 1 END IF * * Set the constants to control overflow. * UNFL = DLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL ULP = DLAMCH( 'Precision' ) SMLNUM = UNFL*( N / ULP ) * * Store the diagonal elements of T in working array WORK. * DO 20 I = 1, N WORK( I ) = T( I, I ) 20 CONTINUE * * Compute 1-norm of each column of strictly upper triangular * part of T to control overflow in triangular solver. * RWORK( 1 ) = ZERO DO 30 J = 2, N RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 ) 30 CONTINUE * IF( RIGHTV ) THEN * * ============================================================ * Compute right eigenvectors. * * IV is index of column in current block. * Non-blocked version always uses IV=NB=1; * blocked version starts with IV=NB, goes down to 1. * (Note the "0-th" column is used to store the original diagonal.) IV = NB IS = M DO 80 KI = N, 1, -1 IF( SOMEV ) THEN IF( .NOT.SELECT( KI ) ) $ GO TO 80 END IF SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM ) * * -------------------------------------------------------- * Complex right eigenvector * WORK( KI + IV*N ) = CONE * * Form right-hand side. * DO 40 K = 1, KI - 1 WORK( K + IV*N ) = -T( K, KI ) 40 CONTINUE * * Solve upper triangular system: * [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK. * DO 50 K = 1, KI - 1 T( K, K ) = T( K, K ) - T( KI, KI ) IF( CABS1( T( K, K ) ).LT.SMIN ) $ T( K, K ) = SMIN 50 CONTINUE * IF( KI.GT.1 ) THEN CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y', $ KI-1, T, LDT, WORK( 1 + IV*N ), SCALE, $ RWORK, INFO ) WORK( KI + IV*N ) = SCALE END IF * * Copy the vector x or Q*x to VR and normalize. * IF( .NOT.OVER ) THEN * ------------------------------ * no back-transform: copy x to VR and normalize. CALL ZCOPY( KI, WORK( 1 + IV*N ), 1, VR( 1, IS ), 1 ) * II = IZAMAX( KI, VR( 1, IS ), 1 ) REMAX = ONE / CABS1( VR( II, IS ) ) CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 ) * DO 60 K = KI + 1, N VR( K, IS ) = CZERO 60 CONTINUE * ELSE IF( NB.EQ.1 ) THEN * ------------------------------ * version 1: back-transform each vector with GEMV, Q*x. IF( KI.GT.1 ) $ CALL ZGEMV( 'N', N, KI-1, CONE, VR, LDVR, $ WORK( 1 + IV*N ), 1, DCMPLX( SCALE ), $ VR( 1, KI ), 1 ) * II = IZAMAX( N, VR( 1, KI ), 1 ) REMAX = ONE / CABS1( VR( II, KI ) ) CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 ) * ELSE * ------------------------------ * version 2: back-transform block of vectors with GEMM * zero out below vector DO K = KI + 1, N WORK( K + IV*N ) = CZERO END DO * * Columns IV:NB of work are valid vectors. * When the number of vectors stored reaches NB, * or if this was last vector, do the GEMM IF( (IV.EQ.1) .OR. (KI.EQ.1) ) THEN CALL ZGEMM( 'N', 'N', N, NB-IV+1, KI+NB-IV, CONE, $ VR, LDVR, $ WORK( 1 + (IV)*N ), N, $ CZERO, $ WORK( 1 + (NB+IV)*N ), N ) * normalize vectors DO K = IV, NB II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 ) REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) ) CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 ) END DO CALL ZLACPY( 'F', N, NB-IV+1, $ WORK( 1 + (NB+IV)*N ), N, $ VR( 1, KI ), LDVR ) IV = NB ELSE IV = IV - 1 END IF END IF * * Restore the original diagonal elements of T. * DO 70 K = 1, KI - 1 T( K, K ) = WORK( K ) 70 CONTINUE * IS = IS - 1 80 CONTINUE END IF * IF( LEFTV ) THEN * * ============================================================ * Compute left eigenvectors. * * IV is index of column in current block. * Non-blocked version always uses IV=1; * blocked version starts with IV=1, goes up to NB. * (Note the "0-th" column is used to store the original diagonal.) IV = 1 IS = 1 DO 130 KI = 1, N * IF( SOMEV ) THEN IF( .NOT.SELECT( KI ) ) $ GO TO 130 END IF SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM ) * * -------------------------------------------------------- * Complex left eigenvector * WORK( KI + IV*N ) = CONE * * Form right-hand side. * DO 90 K = KI + 1, N WORK( K + IV*N ) = -CONJG( T( KI, K ) ) 90 CONTINUE * * Solve conjugate-transposed triangular system: * [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK. * DO 100 K = KI + 1, N T( K, K ) = T( K, K ) - T( KI, KI ) IF( CABS1( T( K, K ) ).LT.SMIN ) $ T( K, K ) = SMIN 100 CONTINUE * IF( KI.LT.N ) THEN CALL ZLATRS( 'Upper', 'Conjugate transpose', $ 'Non-unit', $ 'Y', N-KI, T( KI+1, KI+1 ), LDT, $ WORK( KI+1 + IV*N ), SCALE, RWORK, INFO ) WORK( KI + IV*N ) = SCALE END IF * * Copy the vector x or Q*x to VL and normalize. * IF( .NOT.OVER ) THEN * ------------------------------ * no back-transform: copy x to VL and normalize. CALL ZCOPY( N-KI+1, WORK( KI + IV*N ), 1, VL(KI,IS), $ 1 ) * II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1 REMAX = ONE / CABS1( VL( II, IS ) ) CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 ) * DO 110 K = 1, KI - 1 VL( K, IS ) = CZERO 110 CONTINUE * ELSE IF( NB.EQ.1 ) THEN * ------------------------------ * version 1: back-transform each vector with GEMV, Q*x. IF( KI.LT.N ) $ CALL ZGEMV( 'N', N, N-KI, CONE, VL( 1, KI+1 ), $ LDVL, $ WORK( KI+1 + IV*N ), 1, DCMPLX( SCALE ), $ VL( 1, KI ), 1 ) * II = IZAMAX( N, VL( 1, KI ), 1 ) REMAX = ONE / CABS1( VL( II, KI ) ) CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 ) * ELSE * ------------------------------ * version 2: back-transform block of vectors with GEMM * zero out above vector * could go from KI-NV+1 to KI-1 DO K = 1, KI - 1 WORK( K + IV*N ) = CZERO END DO * * Columns 1:IV of work are valid vectors. * When the number of vectors stored reaches NB, * or if this was last vector, do the GEMM IF( (IV.EQ.NB) .OR. (KI.EQ.N) ) THEN CALL ZGEMM( 'N', 'N', N, IV, N-KI+IV, CONE, $ VL( 1, KI-IV+1 ), LDVL, $ WORK( KI-IV+1 + (1)*N ), N, $ CZERO, $ WORK( 1 + (NB+1)*N ), N ) * normalize vectors DO K = 1, IV II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 ) REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) ) CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 ) END DO CALL ZLACPY( 'F', N, IV, $ WORK( 1 + (NB+1)*N ), N, $ VL( 1, KI-IV+1 ), LDVL ) IV = 1 ELSE IV = IV + 1 END IF END IF * * Restore the original diagonal elements of T. * DO 120 K = KI + 1, N T( K, K ) = WORK( K ) 120 CONTINUE * IS = IS + 1 130 CONTINUE END IF * RETURN * * End of ZTREVC3 * END