numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/alahdg.f | 10799B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
*> \brief \b ALAHDG * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ALAHDG( IOUNIT, PATH ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER IOUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ALAHDG prints header information for the different test paths. *> \endverbatim * * Arguments: * ========== * *> \param[in] IOUNIT *> \verbatim *> IOUNIT is INTEGER *> The unit number to which the header information should be *> printed. *> \endverbatim *> *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The name of the path for which the header information is to *> be printed. Current paths are *> GQR: GQR (general matrices) *> GRQ: GRQ (general matrices) *> LSE: LSE Problem *> GLM: GLM Problem *> GSV: Generalized Singular Value Decomposition *> CSD: CS Decomposition *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup aux_eig * * ===================================================================== SUBROUTINE ALAHDG( IOUNIT, PATH ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER IOUNIT * .. * * ===================================================================== * * .. Local Scalars .. CHARACTER*3 C2 INTEGER ITYPE * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. Executable Statements .. * IF( IOUNIT.LE.0 ) $ RETURN C2 = PATH( 1: 3 ) * * First line describing matrices in this path * IF( LSAMEN( 3, C2, 'GQR' ) ) THEN ITYPE = 1 WRITE( IOUNIT, FMT = 9991 )PATH ELSE IF( LSAMEN( 3, C2, 'GRQ' ) ) THEN ITYPE = 2 WRITE( IOUNIT, FMT = 9992 )PATH ELSE IF( LSAMEN( 3, C2, 'LSE' ) ) THEN ITYPE = 3 WRITE( IOUNIT, FMT = 9993 )PATH ELSE IF( LSAMEN( 3, C2, 'GLM' ) ) THEN ITYPE = 4 WRITE( IOUNIT, FMT = 9994 )PATH ELSE IF( LSAMEN( 3, C2, 'GSV' ) ) THEN ITYPE = 5 WRITE( IOUNIT, FMT = 9995 )PATH ELSE IF( LSAMEN( 3, C2, 'CSD' ) ) THEN ITYPE = 6 WRITE( IOUNIT, FMT = 9996 )PATH END IF * * Matrix types * WRITE( IOUNIT, FMT = 9999 )'Matrix types: ' * IF( ITYPE.EQ.1 )THEN WRITE( IOUNIT, FMT = 9950 )1 WRITE( IOUNIT, FMT = 9952 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9956 )5 WRITE( IOUNIT, FMT = 9957 )6 WRITE( IOUNIT, FMT = 9961 )7 WRITE( IOUNIT, FMT = 9962 )8 ELSE IF( ITYPE.EQ.2 )THEN WRITE( IOUNIT, FMT = 9951 )1 WRITE( IOUNIT, FMT = 9953 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9956 )5 WRITE( IOUNIT, FMT = 9957 )6 WRITE( IOUNIT, FMT = 9961 )7 WRITE( IOUNIT, FMT = 9962 )8 ELSE IF( ITYPE.EQ.3 )THEN WRITE( IOUNIT, FMT = 9950 )1 WRITE( IOUNIT, FMT = 9952 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9955 )5 WRITE( IOUNIT, FMT = 9955 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = 9955 )8 ELSE IF( ITYPE.EQ.4 )THEN WRITE( IOUNIT, FMT = 9951 )1 WRITE( IOUNIT, FMT = 9953 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9955 )5 WRITE( IOUNIT, FMT = 9955 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = 9955 )8 ELSE IF( ITYPE.EQ.5 )THEN WRITE( IOUNIT, FMT = 9950 )1 WRITE( IOUNIT, FMT = 9952 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9956 )5 WRITE( IOUNIT, FMT = 9957 )6 WRITE( IOUNIT, FMT = 9959 )7 WRITE( IOUNIT, FMT = 9960 )8 ELSE IF( ITYPE.EQ.6 )THEN WRITE( IOUNIT, FMT = 9963 )1 WRITE( IOUNIT, FMT = 9964 )2 WRITE( IOUNIT, FMT = 9965 )3 END IF * * Tests performed * WRITE( IOUNIT, FMT = 9999 )'Test ratios: ' * IF( ITYPE.EQ.1 ) THEN * * GQR decomposition of rectangular matrices * WRITE( IOUNIT, FMT = 9930 )1 WRITE( IOUNIT, FMT = 9931 )2 WRITE( IOUNIT, FMT = 9932 )3 WRITE( IOUNIT, FMT = 9933 )4 ELSE IF( ITYPE.EQ.2 ) THEN * * GRQ decomposition of rectangular matrices * WRITE( IOUNIT, FMT = 9934 )1 WRITE( IOUNIT, FMT = 9935 )2 WRITE( IOUNIT, FMT = 9932 )3 WRITE( IOUNIT, FMT = 9933 )4 ELSE IF( ITYPE.EQ.3 ) THEN * * LSE Problem * WRITE( IOUNIT, FMT = 9937 )1 WRITE( IOUNIT, FMT = 9938 )2 ELSE IF( ITYPE.EQ.4 ) THEN * * GLM Problem * WRITE( IOUNIT, FMT = 9939 )1 ELSE IF( ITYPE.EQ.5 ) THEN * * GSVD * WRITE( IOUNIT, FMT = 9940 )1 WRITE( IOUNIT, FMT = 9941 )2 WRITE( IOUNIT, FMT = 9942 )3 WRITE( IOUNIT, FMT = 9943 )4 WRITE( IOUNIT, FMT = 9944 )5 ELSE IF( ITYPE.EQ.6 ) THEN * * CSD * WRITE( IOUNIT, FMT = 9910 ) WRITE( IOUNIT, FMT = 9911 )1 WRITE( IOUNIT, FMT = 9912 )2 WRITE( IOUNIT, FMT = 9913 )3 WRITE( IOUNIT, FMT = 9914 )4 WRITE( IOUNIT, FMT = 9915 )5 WRITE( IOUNIT, FMT = 9916 )6 WRITE( IOUNIT, FMT = 9917 )7 WRITE( IOUNIT, FMT = 9918 )8 WRITE( IOUNIT, FMT = 9919 )9 WRITE( IOUNIT, FMT = 9920 ) WRITE( IOUNIT, FMT = 9921 )10 WRITE( IOUNIT, FMT = 9922 )11 WRITE( IOUNIT, FMT = 9923 )12 WRITE( IOUNIT, FMT = 9924 )13 WRITE( IOUNIT, FMT = 9925 )14 WRITE( IOUNIT, FMT = 9926 )15 END IF * 9999 FORMAT( 1X, A ) 9991 FORMAT( / 1X, A3, ': GQR factorization of general matrices' ) 9992 FORMAT( / 1X, A3, ': GRQ factorization of general matrices' ) 9993 FORMAT( / 1X, A3, ': LSE Problem' ) 9994 FORMAT( / 1X, A3, ': GLM Problem' ) 9995 FORMAT( / 1X, A3, ': Generalized Singular Value Decomposition' ) 9996 FORMAT( / 1X, A3, ': CS Decomposition' ) * 9950 FORMAT( 3X, I2, ': A-diagonal matrix B-upper triangular' ) 9951 FORMAT( 3X, I2, ': A-diagonal matrix B-lower triangular' ) 9952 FORMAT( 3X, I2, ': A-upper triangular B-upper triangular' ) 9953 FORMAT( 3X, I2, ': A-lower triangular B-diagonal triangular' ) 9954 FORMAT( 3X, I2, ': A-lower triangular B-upper triangular' ) * 9955 FORMAT( 3X, I2, ': Random matrices cond(A)=100, cond(B)=10,' ) * 9956 FORMAT( 3X, I2, ': Random matrices cond(A)= sqrt( 0.1/EPS ) ', $ 'cond(B)= sqrt( 0.1/EPS )' ) 9957 FORMAT( 3X, I2, ': Random matrices cond(A)= 0.1/EPS ', $ 'cond(B)= 0.1/EPS' ) 9959 FORMAT( 3X, I2, ': Random matrices cond(A)= sqrt( 0.1/EPS ) ', $ 'cond(B)= 0.1/EPS ' ) 9960 FORMAT( 3X, I2, ': Random matrices cond(A)= 0.1/EPS ', $ 'cond(B)= sqrt( 0.1/EPS )' ) * 9961 FORMAT( 3X, I2, ': Matrix scaled near underflow limit' ) 9962 FORMAT( 3X, I2, ': Matrix scaled near overflow limit' ) 9963 FORMAT( 3X, I2, ': Random orthogonal matrix (Haar measure)' ) 9964 FORMAT( 3X, I2, ': Nearly orthogonal matrix with uniformly ', $ 'distributed angles atan2( S, C ) in CS decomposition' ) 9965 FORMAT( 3X, I2, ': Random orthogonal matrix with clustered ', $ 'angles atan2( S, C ) in CS decomposition' ) * * * GQR test ratio * 9930 FORMAT( 3X, I2, ': norm( R - Q'' * A ) / ( min( N, M )*norm( A )', $ '* EPS )' ) 9931 FORMAT( 3X, I2, ': norm( T * Z - Q'' * B ) / ( min(P,N)*norm(B)', $ '* EPS )' ) 9932 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( N * EPS )' ) 9933 FORMAT( 3X, I2, ': norm( I - Z''*Z ) / ( P * EPS )' ) * * GRQ test ratio * 9934 FORMAT( 3X, I2, ': norm( R - A * Q'' ) / ( min( N,M )*norm(A) * ', $ 'EPS )' ) 9935 FORMAT( 3X, I2, ': norm( T * Q - Z'' * B ) / ( min( P,N ) * nor', $ 'm(B)*EPS )' ) * * LSE test ratio * 9937 FORMAT( 3X, I2, ': norm( A*x - c ) / ( norm(A)*norm(x) * EPS )' ) 9938 FORMAT( 3X, I2, ': norm( B*x - d ) / ( norm(B)*norm(x) * EPS )' ) * * GLM test ratio * 9939 FORMAT( 3X, I2, ': norm( d - A*x - B*y ) / ( (norm(A)+norm(B) )*', $ '(norm(x)+norm(y))*EPS )' ) * * GSVD test ratio * 9940 FORMAT( 3X, I2, ': norm( U'' * A * Q - D1 * R ) / ( min( M, N )*', $ 'norm( A ) * EPS )' ) 9941 FORMAT( 3X, I2, ': norm( V'' * B * Q - D2 * R ) / ( min( P, N )*', $ 'norm( B ) * EPS )' ) 9942 FORMAT( 3X, I2, ': norm( I - U''*U ) / ( M * EPS )' ) 9943 FORMAT( 3X, I2, ': norm( I - V''*V ) / ( P * EPS )' ) 9944 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( N * EPS )' ) * * CSD test ratio * 9910 FORMAT( 3X, '2-by-2 CSD' ) 9911 FORMAT( 3X, I2, ': norm( U1'' * X11 * V1 - C ) / ( max( P, Q)', $ ' * max(norm(I-X''*X),EPS) )' ) 9912 FORMAT( 3X, I2, ': norm( U1'' * X12 * V2-(-S)) / ( max( P,', $ 'M-Q) * max(norm(I-X''*X),EPS) )' ) 9913 FORMAT( 3X, I2, ': norm( U2'' * X21 * V1 - S ) / ( max(M-P,', $ ' Q) * max(norm(I-X''*X),EPS) )' ) 9914 FORMAT( 3X, I2, ': norm( U2'' * X22 * V2 - C ) / ( max(M-P,', $ 'M-Q) * max(norm(I-X''*X),EPS) )' ) 9915 FORMAT( 3X, I2, ': norm( I - U1''*U1 ) / ( P * EPS )' ) 9916 FORMAT( 3X, I2, ': norm( I - U2''*U2 ) / ( (M-P) * EPS )' ) 9917 FORMAT( 3X, I2, ': norm( I - V1''*V1 ) / ( Q * EPS )' ) 9918 FORMAT( 3X, I2, ': norm( I - V2''*V2 ) / ( (M-Q) * EPS )' ) 9919 FORMAT( 3X, I2, ': principal angle ordering ( 0 or ULP )' ) 9920 FORMAT( 3X, '2-by-1 CSD' ) 9921 FORMAT( 3X, I2, ': norm( U1'' * X11 * V1 - C ) / ( max( P, Q)', $ ' * max(norm(I-X''*X),EPS) )' ) 9922 FORMAT( 3X, I2, ': norm( U2'' * X21 * V1 - S ) / ( max( M-P,', $ 'Q) * max(norm(I-X''*X),EPS) )' ) 9923 FORMAT( 3X, I2, ': norm( I - U1''*U1 ) / ( P * EPS )' ) 9924 FORMAT( 3X, I2, ': norm( I - U2''*U2 ) / ( (M-P) * EPS )' ) 9925 FORMAT( 3X, I2, ': norm( I - V1''*V1 ) / ( Q * EPS )' ) 9926 FORMAT( 3X, I2, ': principal angle ordering ( 0 or ULP )' ) RETURN * * End of ALAHDG * END