numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/cget10.f | 4126B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
*> \brief \b CGET10 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CGET10( M, N, A, LDA, B, LDB, WORK, RWORK, RESULT ) * * .. Scalar Arguments .. * INTEGER LDA, LDB, M, N * REAL RESULT * .. * .. Array Arguments .. * REAL RWORK( * ) * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGET10 compares two matrices A and B and computes the ratio *> RESULT = norm( A - B ) / ( norm(A) * M * EPS ) *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrices A and B. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrices A and B. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The m by n matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX array, dimension (LDB,N) *> The m by n matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,M). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (M) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is COMPLEX array, dimension (M) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL *> RESULT = norm( A - B ) / ( norm(A) * M * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CGET10( M, N, A, LDA, B, LDB, WORK, RWORK, RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER LDA, LDB, M, N REAL RESULT * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER J REAL ANORM, EPS, UNFL, WNORM * .. * .. External Functions .. REAL SCASUM, SLAMCH, CLANGE EXTERNAL SCASUM, SLAMCH, CLANGE * .. * .. External Subroutines .. EXTERNAL CAXPY, CCOPY * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) THEN RESULT = ZERO RETURN END IF * UNFL = SLAMCH( 'Safe minimum' ) EPS = SLAMCH( 'Precision' ) * WNORM = ZERO DO 10 J = 1, N CALL CCOPY( M, A( 1, J ), 1, WORK, 1 ) CALL CAXPY( M, CMPLX( -ONE ), B( 1, J ), 1, WORK, 1 ) WNORM = MAX( WNORM, SCASUM( N, WORK, 1 ) ) 10 CONTINUE * ANORM = MAX( CLANGE( '1', M, N, A, LDA, RWORK ), UNFL ) * IF( ANORM.GT.WNORM ) THEN RESULT = ( WNORM / ANORM ) / ( M*EPS ) ELSE IF( ANORM.LT.ONE ) THEN RESULT = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*EPS ) ELSE RESULT = MIN( WNORM / ANORM, REAL( M ) ) / ( M*EPS ) END IF END IF * RETURN * * End of CGET10 * END