numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/cget23.f | 27231B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
*> \brief \b CGET23 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CGET23( COMP, ISRT, BALANC, JTYPE, THRESH, ISEED, * NOUNIT, N, A, LDA, H, W, W1, VL, LDVL, VR, * LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN, * RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT, * WORK, LWORK, RWORK, INFO ) * * .. Scalar Arguments .. * LOGICAL COMP * CHARACTER BALANC * INTEGER INFO, ISRT, JTYPE, LDA, LDLRE, LDVL, LDVR, * $ LWORK, N, NOUNIT * REAL THRESH * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * REAL RCDEIN( * ), RCDVIN( * ), RCNDE1( * ), * $ RCNDV1( * ), RCONDE( * ), RCONDV( * ), * $ RESULT( 11 ), RWORK( * ), SCALE( * ), * $ SCALE1( * ) * COMPLEX A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ), * $ VL( LDVL, * ), VR( LDVR, * ), W( * ), W1( * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGET23 checks the nonsymmetric eigenvalue problem driver CGEEVX. *> If COMP = .FALSE., the first 8 of the following tests will be *> performed on the input matrix A, and also test 9 if LWORK is *> sufficiently large. *> if COMP is .TRUE. all 11 tests will be performed. *> *> (1) | A * VR - VR * W | / ( n |A| ulp ) *> *> Here VR is the matrix of unit right eigenvectors. *> W is a diagonal matrix with diagonal entries W(j). *> *> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) *> *> Here VL is the matrix of unit left eigenvectors, A**H is the *> conjugate transpose of A, and W is as above. *> *> (3) | |VR(i)| - 1 | / ulp and largest component real *> *> VR(i) denotes the i-th column of VR. *> *> (4) | |VL(i)| - 1 | / ulp and largest component real *> *> VL(i) denotes the i-th column of VL. *> *> (5) 0 if W(full) = W(partial), 1/ulp otherwise *> *> W(full) denotes the eigenvalues computed when VR, VL, RCONDV *> and RCONDE are also computed, and W(partial) denotes the *> eigenvalues computed when only some of VR, VL, RCONDV, and *> RCONDE are computed. *> *> (6) 0 if VR(full) = VR(partial), 1/ulp otherwise *> *> VR(full) denotes the right eigenvectors computed when VL, RCONDV *> and RCONDE are computed, and VR(partial) denotes the result *> when only some of VL and RCONDV are computed. *> *> (7) 0 if VL(full) = VL(partial), 1/ulp otherwise *> *> VL(full) denotes the left eigenvectors computed when VR, RCONDV *> and RCONDE are computed, and VL(partial) denotes the result *> when only some of VR and RCONDV are computed. *> *> (8) 0 if SCALE, ILO, IHI, ABNRM (full) = *> SCALE, ILO, IHI, ABNRM (partial) *> 1/ulp otherwise *> *> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. *> (full) is when VR, VL, RCONDE and RCONDV are also computed, and *> (partial) is when some are not computed. *> *> (9) 0 if RCONDV(full) = RCONDV(partial), 1/ulp otherwise *> *> RCONDV(full) denotes the reciprocal condition numbers of the *> right eigenvectors computed when VR, VL and RCONDE are also *> computed. RCONDV(partial) denotes the reciprocal condition *> numbers when only some of VR, VL and RCONDE are computed. *> *> (10) |RCONDV - RCDVIN| / cond(RCONDV) *> *> RCONDV is the reciprocal right eigenvector condition number *> computed by CGEEVX and RCDVIN (the precomputed true value) *> is supplied as input. cond(RCONDV) is the condition number of *> RCONDV, and takes errors in computing RCONDV into account, so *> that the resulting quantity should be O(ULP). cond(RCONDV) is *> essentially given by norm(A)/RCONDE. *> *> (11) |RCONDE - RCDEIN| / cond(RCONDE) *> *> RCONDE is the reciprocal eigenvalue condition number *> computed by CGEEVX and RCDEIN (the precomputed true value) *> is supplied as input. cond(RCONDE) is the condition number *> of RCONDE, and takes errors in computing RCONDE into account, *> so that the resulting quantity should be O(ULP). cond(RCONDE) *> is essentially given by norm(A)/RCONDV. *> \endverbatim * * Arguments: * ========== * *> \param[in] COMP *> \verbatim *> COMP is LOGICAL *> COMP describes which input tests to perform: *> = .FALSE. if the computed condition numbers are not to *> be tested against RCDVIN and RCDEIN *> = .TRUE. if they are to be compared *> \endverbatim *> *> \param[in] ISRT *> \verbatim *> ISRT is INTEGER *> If COMP = .TRUE., ISRT indicates in how the eigenvalues *> corresponding to values in RCDVIN and RCDEIN are ordered: *> = 0 means the eigenvalues are sorted by *> increasing real part *> = 1 means the eigenvalues are sorted by *> increasing imaginary part *> If COMP = .FALSE., ISRT is not referenced. *> \endverbatim *> *> \param[in] BALANC *> \verbatim *> BALANC is CHARACTER *> Describes the balancing option to be tested. *> = 'N' for no permuting or diagonal scaling *> = 'P' for permuting but no diagonal scaling *> = 'S' for no permuting but diagonal scaling *> = 'B' for permuting and diagonal scaling *> \endverbatim *> *> \param[in] JTYPE *> \verbatim *> JTYPE is INTEGER *> Type of input matrix. Used to label output if error occurs. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> If COMP = .FALSE., the random number generator seed *> used to produce matrix. *> If COMP = .TRUE., ISEED(1) = the number of the example. *> Used to label output if error occurs. *> \endverbatim *> *> \param[in] NOUNIT *> \verbatim *> NOUNIT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns INFO not equal to 0.) *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The dimension of A. N must be at least 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> Used to hold the matrix whose eigenvalues are to be *> computed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A, and H. LDA must be at *> least 1 and at least N. *> \endverbatim *> *> \param[out] H *> \verbatim *> H is COMPLEX array, dimension (LDA,N) *> Another copy of the test matrix A, modified by CGEEVX. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is COMPLEX array, dimension (N) *> Contains the eigenvalues of A. *> \endverbatim *> *> \param[out] W1 *> \verbatim *> W1 is COMPLEX array, dimension (N) *> Like W, this array contains the eigenvalues of A, *> but those computed when CGEEVX only computes a partial *> eigendecomposition, i.e. not the eigenvalues and left *> and right eigenvectors. *> \endverbatim *> *> \param[out] VL *> \verbatim *> VL is COMPLEX array, dimension (LDVL,N) *> VL holds the computed left eigenvectors. *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> Leading dimension of VL. Must be at least max(1,N). *> \endverbatim *> *> \param[out] VR *> \verbatim *> VR is COMPLEX array, dimension (LDVR,N) *> VR holds the computed right eigenvectors. *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> Leading dimension of VR. Must be at least max(1,N). *> \endverbatim *> *> \param[out] LRE *> \verbatim *> LRE is COMPLEX array, dimension (LDLRE,N) *> LRE holds the computed right or left eigenvectors. *> \endverbatim *> *> \param[in] LDLRE *> \verbatim *> LDLRE is INTEGER *> Leading dimension of LRE. Must be at least max(1,N). *> \endverbatim *> *> \param[out] RCONDV *> \verbatim *> RCONDV is REAL array, dimension (N) *> RCONDV holds the computed reciprocal condition numbers *> for eigenvectors. *> \endverbatim *> *> \param[out] RCNDV1 *> \verbatim *> RCNDV1 is REAL array, dimension (N) *> RCNDV1 holds more computed reciprocal condition numbers *> for eigenvectors. *> \endverbatim *> *> \param[in] RCDVIN *> \verbatim *> RCDVIN is REAL array, dimension (N) *> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal *> condition numbers for eigenvectors to be compared with *> RCONDV. *> \endverbatim *> *> \param[out] RCONDE *> \verbatim *> RCONDE is REAL array, dimension (N) *> RCONDE holds the computed reciprocal condition numbers *> for eigenvalues. *> \endverbatim *> *> \param[out] RCNDE1 *> \verbatim *> RCNDE1 is REAL array, dimension (N) *> RCNDE1 holds more computed reciprocal condition numbers *> for eigenvalues. *> \endverbatim *> *> \param[in] RCDEIN *> \verbatim *> RCDEIN is REAL array, dimension (N) *> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal *> condition numbers for eigenvalues to be compared with *> RCONDE. *> \endverbatim *> *> \param[out] SCALE *> \verbatim *> SCALE is REAL array, dimension (N) *> Holds information describing balancing of matrix. *> \endverbatim *> *> \param[out] SCALE1 *> \verbatim *> SCALE1 is REAL array, dimension (N) *> Holds information describing balancing of matrix. *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (11) *> The values computed by the 11 tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The number of entries in WORK. This must be at least *> 2*N, and 2*N+N**2 if tests 9, 10 or 11 are to be performed. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (2*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> If 0, successful exit. *> If <0, input parameter -INFO had an incorrect value. *> If >0, CGEEVX returned an error code, the absolute *> value of which is returned. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CGET23( COMP, ISRT, BALANC, JTYPE, THRESH, ISEED, $ NOUNIT, N, A, LDA, H, W, W1, VL, LDVL, VR, $ LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN, $ RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT, $ WORK, LWORK, RWORK, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL COMP CHARACTER BALANC INTEGER INFO, ISRT, JTYPE, LDA, LDLRE, LDVL, LDVR, $ LWORK, N, NOUNIT REAL THRESH * .. * .. Array Arguments .. INTEGER ISEED( 4 ) REAL RCDEIN( * ), RCDVIN( * ), RCNDE1( * ), $ RCNDV1( * ), RCONDE( * ), RCONDV( * ), $ RESULT( 11 ), RWORK( * ), SCALE( * ), $ SCALE1( * ) COMPLEX A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ), $ VL( LDVL, * ), VR( LDVR, * ), W( * ), W1( * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TWO PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 ) REAL EPSIN PARAMETER ( EPSIN = 5.9605E-8 ) * .. * .. Local Scalars .. LOGICAL BALOK, NOBAL CHARACTER SENSE INTEGER I, IHI, IHI1, IINFO, ILO, ILO1, ISENS, ISENSM, $ J, JJ, KMIN REAL ABNRM, ABNRM1, EPS, SMLNUM, TNRM, TOL, TOLIN, $ ULP, ULPINV, V, VMAX, VMX, VRICMP, VRIMIN, $ VRMX, VTST COMPLEX CTMP * .. * .. Local Arrays .. CHARACTER SENS( 2 ) REAL RES( 2 ) COMPLEX CDUM( 1 ) * .. * .. External Functions .. LOGICAL LSAME REAL SCNRM2, SLAMCH EXTERNAL LSAME, SCNRM2, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEEVX, CGET22, CLACPY, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, MIN, REAL * .. * .. Data statements .. DATA SENS / 'N', 'V' / * .. * .. Executable Statements .. * * Check for errors * NOBAL = LSAME( BALANC, 'N' ) BALOK = NOBAL .OR. LSAME( BALANC, 'P' ) .OR. $ LSAME( BALANC, 'S' ) .OR. LSAME( BALANC, 'B' ) INFO = 0 IF( ISRT.NE.0 .AND. ISRT.NE.1 ) THEN INFO = -2 ELSE IF( .NOT.BALOK ) THEN INFO = -3 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -5 ELSE IF( NOUNIT.LE.0 ) THEN INFO = -7 ELSE IF( N.LT.0 ) THEN INFO = -8 ELSE IF( LDA.LT.1 .OR. LDA.LT.N ) THEN INFO = -10 ELSE IF( LDVL.LT.1 .OR. LDVL.LT.N ) THEN INFO = -15 ELSE IF( LDVR.LT.1 .OR. LDVR.LT.N ) THEN INFO = -17 ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.N ) THEN INFO = -19 ELSE IF( LWORK.LT.2*N .OR. ( COMP .AND. LWORK.LT.2*N+N*N ) ) THEN INFO = -30 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGET23', -INFO ) RETURN END IF * * Quick return if nothing to do * DO 10 I = 1, 11 RESULT( I ) = -ONE 10 CONTINUE * IF( N.EQ.0 ) $ RETURN * * More Important constants * ULP = SLAMCH( 'Precision' ) SMLNUM = SLAMCH( 'S' ) ULPINV = ONE / ULP * * Compute eigenvalues and eigenvectors, and test them * IF( LWORK.GE.2*N+N*N ) THEN SENSE = 'B' ISENSM = 2 ELSE SENSE = 'E' ISENSM = 1 END IF CALL CLACPY( 'F', N, N, A, LDA, H, LDA ) CALL CGEEVX( BALANC, 'V', 'V', SENSE, N, H, LDA, W, VL, LDVL, VR, $ LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV, WORK, $ LWORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'CGEEVX1', IINFO, N, JTYPE, $ BALANC, ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'CGEEVX1', IINFO, N, ISEED( 1 ) END IF INFO = ABS( IINFO ) RETURN END IF * * Do Test (1) * CALL CGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, W, WORK, RWORK, $ RES ) RESULT( 1 ) = RES( 1 ) * * Do Test (2) * CALL CGET22( 'C', 'N', 'C', N, A, LDA, VL, LDVL, W, WORK, RWORK, $ RES ) RESULT( 2 ) = RES( 1 ) * * Do Test (3) * DO 30 J = 1, N TNRM = SCNRM2( N, VR( 1, J ), 1 ) RESULT( 3 ) = MAX( RESULT( 3 ), $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) ) VMX = ZERO VRMX = ZERO DO 20 JJ = 1, N VTST = ABS( VR( JJ, J ) ) IF( VTST.GT.VMX ) $ VMX = VTST IF( AIMAG( VR( JJ, J ) ).EQ.ZERO .AND. $ ABS( REAL( VR( JJ, J ) ) ).GT.VRMX ) $ VRMX = ABS( REAL( VR( JJ, J ) ) ) 20 CONTINUE IF( VRMX / VMX.LT.ONE-TWO*ULP ) $ RESULT( 3 ) = ULPINV 30 CONTINUE * * Do Test (4) * DO 50 J = 1, N TNRM = SCNRM2( N, VL( 1, J ), 1 ) RESULT( 4 ) = MAX( RESULT( 4 ), $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) ) VMX = ZERO VRMX = ZERO DO 40 JJ = 1, N VTST = ABS( VL( JJ, J ) ) IF( VTST.GT.VMX ) $ VMX = VTST IF( AIMAG( VL( JJ, J ) ).EQ.ZERO .AND. $ ABS( REAL( VL( JJ, J ) ) ).GT.VRMX ) $ VRMX = ABS( REAL( VL( JJ, J ) ) ) 40 CONTINUE IF( VRMX / VMX.LT.ONE-TWO*ULP ) $ RESULT( 4 ) = ULPINV 50 CONTINUE * * Test for all options of computing condition numbers * DO 200 ISENS = 1, ISENSM * SENSE = SENS( ISENS ) * * Compute eigenvalues only, and test them * CALL CLACPY( 'F', N, N, A, LDA, H, LDA ) CALL CGEEVX( BALANC, 'N', 'N', SENSE, N, H, LDA, W1, CDUM, 1, $ CDUM, 1, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1, $ RCNDV1, WORK, LWORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'CGEEVX2', IINFO, N, JTYPE, $ BALANC, ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'CGEEVX2', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 190 END IF * * Do Test (5) * DO 60 J = 1, N IF( W( J ).NE.W1( J ) ) $ RESULT( 5 ) = ULPINV 60 CONTINUE * * Do Test (8) * IF( .NOT.NOBAL ) THEN DO 70 J = 1, N IF( SCALE( J ).NE.SCALE1( J ) ) $ RESULT( 8 ) = ULPINV 70 CONTINUE IF( ILO.NE.ILO1 ) $ RESULT( 8 ) = ULPINV IF( IHI.NE.IHI1 ) $ RESULT( 8 ) = ULPINV IF( ABNRM.NE.ABNRM1 ) $ RESULT( 8 ) = ULPINV END IF * * Do Test (9) * IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN DO 80 J = 1, N IF( RCONDV( J ).NE.RCNDV1( J ) ) $ RESULT( 9 ) = ULPINV 80 CONTINUE END IF * * Compute eigenvalues and right eigenvectors, and test them * CALL CLACPY( 'F', N, N, A, LDA, H, LDA ) CALL CGEEVX( BALANC, 'N', 'V', SENSE, N, H, LDA, W1, CDUM, 1, $ LRE, LDLRE, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1, $ RCNDV1, WORK, LWORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'CGEEVX3', IINFO, N, JTYPE, $ BALANC, ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'CGEEVX3', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 190 END IF * * Do Test (5) again * DO 90 J = 1, N IF( W( J ).NE.W1( J ) ) $ RESULT( 5 ) = ULPINV 90 CONTINUE * * Do Test (6) * DO 110 J = 1, N DO 100 JJ = 1, N IF( VR( J, JJ ).NE.LRE( J, JJ ) ) $ RESULT( 6 ) = ULPINV 100 CONTINUE 110 CONTINUE * * Do Test (8) again * IF( .NOT.NOBAL ) THEN DO 120 J = 1, N IF( SCALE( J ).NE.SCALE1( J ) ) $ RESULT( 8 ) = ULPINV 120 CONTINUE IF( ILO.NE.ILO1 ) $ RESULT( 8 ) = ULPINV IF( IHI.NE.IHI1 ) $ RESULT( 8 ) = ULPINV IF( ABNRM.NE.ABNRM1 ) $ RESULT( 8 ) = ULPINV END IF * * Do Test (9) again * IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN DO 130 J = 1, N IF( RCONDV( J ).NE.RCNDV1( J ) ) $ RESULT( 9 ) = ULPINV 130 CONTINUE END IF * * Compute eigenvalues and left eigenvectors, and test them * CALL CLACPY( 'F', N, N, A, LDA, H, LDA ) CALL CGEEVX( BALANC, 'V', 'N', SENSE, N, H, LDA, W1, LRE, $ LDLRE, CDUM, 1, ILO1, IHI1, SCALE1, ABNRM1, $ RCNDE1, RCNDV1, WORK, LWORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'CGEEVX4', IINFO, N, JTYPE, $ BALANC, ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'CGEEVX4', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 190 END IF * * Do Test (5) again * DO 140 J = 1, N IF( W( J ).NE.W1( J ) ) $ RESULT( 5 ) = ULPINV 140 CONTINUE * * Do Test (7) * DO 160 J = 1, N DO 150 JJ = 1, N IF( VL( J, JJ ).NE.LRE( J, JJ ) ) $ RESULT( 7 ) = ULPINV 150 CONTINUE 160 CONTINUE * * Do Test (8) again * IF( .NOT.NOBAL ) THEN DO 170 J = 1, N IF( SCALE( J ).NE.SCALE1( J ) ) $ RESULT( 8 ) = ULPINV 170 CONTINUE IF( ILO.NE.ILO1 ) $ RESULT( 8 ) = ULPINV IF( IHI.NE.IHI1 ) $ RESULT( 8 ) = ULPINV IF( ABNRM.NE.ABNRM1 ) $ RESULT( 8 ) = ULPINV END IF * * Do Test (9) again * IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN DO 180 J = 1, N IF( RCONDV( J ).NE.RCNDV1( J ) ) $ RESULT( 9 ) = ULPINV 180 CONTINUE END IF * 190 CONTINUE * 200 CONTINUE * * If COMP, compare condition numbers to precomputed ones * IF( COMP ) THEN CALL CLACPY( 'F', N, N, A, LDA, H, LDA ) CALL CGEEVX( 'N', 'V', 'V', 'B', N, H, LDA, W, VL, LDVL, VR, $ LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV, $ WORK, LWORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUNIT, FMT = 9999 )'CGEEVX5', IINFO, N, ISEED( 1 ) INFO = ABS( IINFO ) GO TO 250 END IF * * Sort eigenvalues and condition numbers lexicographically * to compare with inputs * DO 220 I = 1, N - 1 KMIN = I IF( ISRT.EQ.0 ) THEN VRIMIN = REAL( W( I ) ) ELSE VRIMIN = AIMAG( W( I ) ) END IF DO 210 J = I + 1, N IF( ISRT.EQ.0 ) THEN VRICMP = REAL( W( J ) ) ELSE VRICMP = AIMAG( W( J ) ) END IF IF( VRICMP.LT.VRIMIN ) THEN KMIN = J VRIMIN = VRICMP END IF 210 CONTINUE CTMP = W( KMIN ) W( KMIN ) = W( I ) W( I ) = CTMP VRIMIN = RCONDE( KMIN ) RCONDE( KMIN ) = RCONDE( I ) RCONDE( I ) = VRIMIN VRIMIN = RCONDV( KMIN ) RCONDV( KMIN ) = RCONDV( I ) RCONDV( I ) = VRIMIN 220 CONTINUE * * Compare condition numbers for eigenvectors * taking their condition numbers into account * RESULT( 10 ) = ZERO EPS = MAX( EPSIN, ULP ) V = MAX( REAL( N )*EPS*ABNRM, SMLNUM ) IF( ABNRM.EQ.ZERO ) $ V = ONE DO 230 I = 1, N IF( V.GT.RCONDV( I )*RCONDE( I ) ) THEN TOL = RCONDV( I ) ELSE TOL = V / RCONDE( I ) END IF IF( V.GT.RCDVIN( I )*RCDEIN( I ) ) THEN TOLIN = RCDVIN( I ) ELSE TOLIN = V / RCDEIN( I ) END IF TOL = MAX( TOL, SMLNUM / EPS ) TOLIN = MAX( TOLIN, SMLNUM / EPS ) IF( EPS*( RCDVIN( I )-TOLIN ).GT.RCONDV( I )+TOL ) THEN VMAX = ONE / EPS ELSE IF( RCDVIN( I )-TOLIN.GT.RCONDV( I )+TOL ) THEN VMAX = ( RCDVIN( I )-TOLIN ) / ( RCONDV( I )+TOL ) ELSE IF( RCDVIN( I )+TOLIN.LT.EPS*( RCONDV( I )-TOL ) ) THEN VMAX = ONE / EPS ELSE IF( RCDVIN( I )+TOLIN.LT.RCONDV( I )-TOL ) THEN VMAX = ( RCONDV( I )-TOL ) / ( RCDVIN( I )+TOLIN ) ELSE VMAX = ONE END IF RESULT( 10 ) = MAX( RESULT( 10 ), VMAX ) 230 CONTINUE * * Compare condition numbers for eigenvalues * taking their condition numbers into account * RESULT( 11 ) = ZERO DO 240 I = 1, N IF( V.GT.RCONDV( I ) ) THEN TOL = ONE ELSE TOL = V / RCONDV( I ) END IF IF( V.GT.RCDVIN( I ) ) THEN TOLIN = ONE ELSE TOLIN = V / RCDVIN( I ) END IF TOL = MAX( TOL, SMLNUM / EPS ) TOLIN = MAX( TOLIN, SMLNUM / EPS ) IF( EPS*( RCDEIN( I )-TOLIN ).GT.RCONDE( I )+TOL ) THEN VMAX = ONE / EPS ELSE IF( RCDEIN( I )-TOLIN.GT.RCONDE( I )+TOL ) THEN VMAX = ( RCDEIN( I )-TOLIN ) / ( RCONDE( I )+TOL ) ELSE IF( RCDEIN( I )+TOLIN.LT.EPS*( RCONDE( I )-TOL ) ) THEN VMAX = ONE / EPS ELSE IF( RCDEIN( I )+TOLIN.LT.RCONDE( I )-TOL ) THEN VMAX = ( RCONDE( I )-TOL ) / ( RCDEIN( I )+TOLIN ) ELSE VMAX = ONE END IF RESULT( 11 ) = MAX( RESULT( 11 ), VMAX ) 240 CONTINUE 250 CONTINUE * END IF * 9999 FORMAT( ' CGET23: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', INPUT EXAMPLE NUMBER = ', I4 ) 9998 FORMAT( ' CGET23: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', BALANC = ', A, ', ISEED=(', $ 3( I5, ',' ), I5, ')' ) * RETURN * * End of CGET23 * END