numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/cget36.f | 5756B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
*> \brief \b CGET36 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CGET36( RMAX, LMAX, NINFO, KNT, NIN ) * * .. Scalar Arguments .. * INTEGER KNT, LMAX, NIN, NINFO * REAL RMAX * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGET36 tests CTREXC, a routine for reordering diagonal entries of a *> matrix in complex Schur form. Thus, CLAEXC computes a unitary matrix *> Q such that *> *> Q' * T1 * Q = T2 *> *> and where one of the diagonal blocks of T1 (the one at row IFST) has *> been moved to position ILST. *> *> The test code verifies that the residual Q'*T1*Q-T2 is small, that T2 *> is in Schur form, and that the final position of the IFST block is *> ILST. *> *> The test matrices are read from a file with logical unit number NIN. *> \endverbatim * * Arguments: * ========== * *> \param[out] RMAX *> \verbatim *> RMAX is REAL *> Value of the largest test ratio. *> \endverbatim *> *> \param[out] LMAX *> \verbatim *> LMAX is INTEGER *> Example number where largest test ratio achieved. *> \endverbatim *> *> \param[out] NINFO *> \verbatim *> NINFO is INTEGER *> Number of examples where INFO is nonzero. *> \endverbatim *> *> \param[out] KNT *> \verbatim *> KNT is INTEGER *> Total number of examples tested. *> \endverbatim *> *> \param[in] NIN *> \verbatim *> NIN is INTEGER *> Input logical unit number. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CGET36( RMAX, LMAX, NINFO, KNT, NIN ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER KNT, LMAX, NIN, NINFO REAL RMAX * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) INTEGER LDT, LWORK PARAMETER ( LDT = 10, LWORK = 2*LDT*LDT ) * .. * .. Local Scalars .. INTEGER I, IFST, ILST, INFO1, INFO2, J, N REAL EPS, RES COMPLEX CTEMP * .. * .. Local Arrays .. REAL RESULT( 2 ), RWORK( LDT ) COMPLEX DIAG( LDT ), Q( LDT, LDT ), T1( LDT, LDT ), $ T2( LDT, LDT ), TMP( LDT, LDT ), WORK( LWORK ) * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL CCOPY, CHST01, CLACPY, CLASET, CTREXC * .. * .. Executable Statements .. * EPS = SLAMCH( 'P' ) RMAX = ZERO LMAX = 0 KNT = 0 NINFO = 0 * * Read input data until N=0 * 10 CONTINUE READ( NIN, FMT = * )N, IFST, ILST IF( N.EQ.0 ) $ RETURN KNT = KNT + 1 DO 20 I = 1, N READ( NIN, FMT = * )( TMP( I, J ), J = 1, N ) 20 CONTINUE CALL CLACPY( 'F', N, N, TMP, LDT, T1, LDT ) CALL CLACPY( 'F', N, N, TMP, LDT, T2, LDT ) RES = ZERO * * Test without accumulating Q * CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDT ) CALL CTREXC( 'N', N, T1, LDT, Q, LDT, IFST, ILST, INFO1 ) DO 40 I = 1, N DO 30 J = 1, N IF( I.EQ.J .AND. Q( I, J ).NE.CONE ) $ RES = RES + ONE / EPS IF( I.NE.J .AND. Q( I, J ).NE.CZERO ) $ RES = RES + ONE / EPS 30 CONTINUE 40 CONTINUE * * Test with accumulating Q * CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDT ) CALL CTREXC( 'V', N, T2, LDT, Q, LDT, IFST, ILST, INFO2 ) * * Compare T1 with T2 * DO 60 I = 1, N DO 50 J = 1, N IF( T1( I, J ).NE.T2( I, J ) ) $ RES = RES + ONE / EPS 50 CONTINUE 60 CONTINUE IF( INFO1.NE.0 .OR. INFO2.NE.0 ) $ NINFO = NINFO + 1 IF( INFO1.NE.INFO2 ) $ RES = RES + ONE / EPS * * Test for successful reordering of T2 * CALL CCOPY( N, TMP, LDT+1, DIAG, 1 ) IF( IFST.LT.ILST ) THEN DO 70 I = IFST + 1, ILST CTEMP = DIAG( I ) DIAG( I ) = DIAG( I-1 ) DIAG( I-1 ) = CTEMP 70 CONTINUE ELSE IF( IFST.GT.ILST ) THEN DO 80 I = IFST - 1, ILST, -1 CTEMP = DIAG( I+1 ) DIAG( I+1 ) = DIAG( I ) DIAG( I ) = CTEMP 80 CONTINUE END IF DO 90 I = 1, N IF( T2( I, I ).NE.DIAG( I ) ) $ RES = RES + ONE / EPS 90 CONTINUE * * Test for small residual, and orthogonality of Q * CALL CHST01( N, 1, N, TMP, LDT, T2, LDT, Q, LDT, WORK, LWORK, $ RWORK, RESULT ) RES = RES + RESULT( 1 ) + RESULT( 2 ) * * Test for T2 being in Schur form * DO 110 J = 1, N - 1 DO 100 I = J + 1, N IF( T2( I, J ).NE.CZERO ) $ RES = RES + ONE / EPS 100 CONTINUE 110 CONTINUE IF( RES.GT.RMAX ) THEN RMAX = RES LMAX = KNT END IF GO TO 10 * * End of CGET36 * END