numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/EIG/csyl01.f 11724B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
*> \brief \b CSYL01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CSYL01( THRESH, NFAIL, RMAX, NINFO, KNT )
*
*     .. Scalar Arguments ..
*     INTEGER            KNT
*     REAL               THRESH
*     ..
*     .. Array Arguments ..
*     INTEGER            NFAIL( 3 ), NINFO( 2 )
*     REAL               RMAX( 2 )
*     ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CSYL01 tests CTRSYL and CTRSYL3, routines for solving the Sylvester matrix
*> equation
*>
*>    op(A)*X + ISGN*X*op(B) = scale*C,
*>
*> where op(A) and op(B) are both upper triangular form, op() represents an
*> optional conjugate transpose, and ISGN can be -1 or +1. Scale is an output
*> less than or equal to 1, chosen to avoid overflow in X.
*>
*> The test code verifies that the following residual does not exceed
*> the provided threshold:
*>
*>    norm(op(A)*X + ISGN*X*op(B) - scale*C) /
*>        (EPS*max(norm(A),norm(B))*norm(X))
*>
*> This routine complements CGET35 by testing with larger,
*> random matrices, of which some require rescaling of X to avoid overflow.
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] THRESH
*> \verbatim
*>          THRESH is REAL
*>          A test will count as "failed" if the residual, computed as
*>          described above, exceeds THRESH.
*> \endverbatim
*>
*> \param[out] NFAIL
*> \verbatim
*>          NFAIL is INTEGER array, dimension (3)
*>          NFAIL(1) = No. of times residual CTRSYL exceeds threshold THRESH
*>          NFAIL(2) = No. of times residual CTRSYL3 exceeds threshold THRESH
*>          NFAIL(3) = No. of times CTRSYL3 and CTRSYL deviate
*> \endverbatim
*>
*> \param[out] RMAX
*> \verbatim
*>          RMAX is DOUBLE PRECISION array, dimension (2)
*>          RMAX(1) = Value of the largest test ratio of CTRSYL
*>          RMAX(2) = Value of the largest test ratio of CTRSYL3
*> \endverbatim
*>
*> \param[out] NINFO
*> \verbatim
*>          NINFO is INTEGER array, dimension (2)
*>          NINFO(1) = No. of times CTRSYL where INFO is nonzero
*>          NINFO(2) = No. of times CTRSYL3 where INFO is nonzero
*> \endverbatim
*>
*> \param[out] KNT
*> \verbatim
*>          KNT is INTEGER
*>          Total number of examples tested.
*> \endverbatim

*
*  -- LAPACK test routine --
      SUBROUTINE CSYL01( THRESH, NFAIL, RMAX, NINFO, KNT )
      IMPLICIT NONE
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            KNT
      REAL               THRESH
*     ..
*     .. Array Arguments ..
      INTEGER            NFAIL( 3 ), NINFO( 2 )
      REAL               RMAX( 2 )
*     ..
*
*  =====================================================================
*     ..
*     .. Parameters ..
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
      REAL               ONE, ZERO
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      INTEGER            MAXM, MAXN, LDSWORK
      PARAMETER          ( MAXM = 101, MAXN = 138, LDSWORK = 18 )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANA, TRANB
      INTEGER            I, INFO, IINFO, ISGN, ITRANA, ITRANB, J, KLA,
     $                   KUA, KLB, KUB, M, N
      REAL               ANRM, BNRM, BIGNUM, EPS, RES, RES1,
     $                   SCALE, SCALE3, SMLNUM, TNRM, XNRM
      COMPLEX            RMUL
*     ..
*     .. Local Arrays ..
      COMPLEX            DUML( MAXM ), DUMR( MAXN ),
     $                   D( MAX( MAXM, MAXN ) )
      REAL               DUM( MAXN ), VM( 2 )
      INTEGER            ISEED( 4 ), IWORK( MAXM + MAXN + 2 )
*     ..
*     .. Allocatable Arrays ..
      INTEGER            AllocateStatus
      COMPLEX, DIMENSION(:,:), ALLOCATABLE :: A, B, C, CC, X
      REAL,    DIMENSION(:,:), ALLOCATABLE :: SWORK
*     ..
*     .. External Functions ..
      LOGICAL            SISNAN
      REAL               SLAMCH, CLANGE
      EXTERNAL           SISNAN, SLAMCH, CLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLATMR, CLACPY, CGEMM, CTRSYL, CTRSYL3
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL, MAX
*     ..
*     .. Allocate memory dynamically ..
      ALLOCATE ( A( MAXM, MAXM ), STAT = AllocateStatus )
      IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
      ALLOCATE ( B( MAXN, MAXN ), STAT = AllocateStatus )
      IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
      ALLOCATE ( C( MAXM, MAXN ), STAT = AllocateStatus )
      IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
      ALLOCATE ( CC( MAXM, MAXN ), STAT = AllocateStatus )
      IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
      ALLOCATE ( X( MAXM, MAXN ), STAT = AllocateStatus )
      IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
      ALLOCATE ( SWORK( LDSWORK, 54 ), STAT = AllocateStatus )
      IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
*     ..
*     .. Executable Statements ..
*
*     Get machine parameters
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Expect INFO = 0
      VM( 1 ) = ONE
*     Expect INFO = 1
      VM( 2 ) = 0.5E+0
*
*     Begin test loop
*
      NINFO( 1 ) = 0
      NINFO( 2 ) = 0
      NFAIL( 1 ) = 0
      NFAIL( 2 ) = 0
      NFAIL( 3 ) = 0
      RMAX( 1 ) = ZERO
      RMAX( 2 ) = ZERO
      KNT = 0
      ISEED( 1 ) = 1
      ISEED( 2 ) = 1
      ISEED( 3 ) = 1
      ISEED( 4 ) = 1
      SCALE = ONE
      SCALE3 = ONE
      DO J = 1, 2
         DO ISGN = -1, 1, 2
*           Reset seed (overwritten by LATMR)
            ISEED( 1 ) = 1
            ISEED( 2 ) = 1
            ISEED( 3 ) = 1
            ISEED( 4 ) = 1
            DO M = 32, MAXM, 23
               KLA = 0
               KUA = M - 1
               CALL CLATMR( M, M, 'S', ISEED, 'N', D,
     $                      6, ONE, CONE, 'T', 'N',
     $                      DUML, 1, ONE, DUMR, 1, ONE,
     $                      'N', IWORK, KLA, KUA, ZERO,
     $                      ONE, 'NO', A, MAXM, IWORK,
     $                      IINFO )
               DO I = 1, M
                  A( I, I ) = A( I, I ) * VM( J )
               END DO
               ANRM = CLANGE( 'M', M, M, A, MAXM, DUM )
               DO N = 51, MAXN, 29
                  KLB = 0
                  KUB = N - 1
                  CALL CLATMR( N, N, 'S', ISEED, 'N', D,
     $                         6, ONE, CONE, 'T', 'N',
     $                         DUML, 1, ONE, DUMR, 1, ONE,
     $                         'N', IWORK, KLB, KUB, ZERO,
     $                         ONE, 'NO', B, MAXN, IWORK,
     $                         IINFO )
                  DO I = 1, N
                     B( I, I ) = B( I, I ) * VM ( J )
                  END DO
                  BNRM = CLANGE( 'M', N, N, B, MAXN, DUM )
                  TNRM = MAX( ANRM, BNRM )
                  CALL CLATMR( M, N, 'S', ISEED, 'N', D,
     $                         6, ONE, CONE, 'T', 'N',
     $                         DUML, 1, ONE, DUMR, 1, ONE,
     $                         'N', IWORK, M, N, ZERO, ONE,
     $                         'NO', C, MAXM, IWORK, IINFO )
                  DO ITRANA = 1, 2
                     IF( ITRANA.EQ.1 )
     $                   TRANA = 'N'
                     IF( ITRANA.EQ.2 )
     $                   TRANA = 'C'
                     DO ITRANB = 1, 2
                        IF( ITRANB.EQ.1 )
     $                     TRANB = 'N'
                        IF( ITRANB.EQ.2 )
     $                     TRANB = 'C'
                        KNT = KNT + 1
*
                        CALL CLACPY( 'All', M, N, C, MAXM, X, MAXM)
                        CALL CLACPY( 'All', M, N, C, MAXM, CC, MAXM)
                        CALL CTRSYL( TRANA, TRANB, ISGN, M, N, 
     $                               A, MAXM, B, MAXN, X, MAXM,
     $                               SCALE, IINFO )
                        IF( IINFO.NE.0 )
     $                     NINFO( 1 ) = NINFO( 1 ) + 1
                        XNRM = CLANGE( 'M', M, N, X, MAXM, DUM )
                        RMUL = CONE
                        IF( XNRM.GT.ONE .AND. TNRM.GT.ONE ) THEN
                           IF( XNRM.GT.BIGNUM / TNRM ) THEN
                              RMUL = CONE / MAX( XNRM, TNRM )
                           END IF
                        END IF
                        CALL CGEMM( TRANA, 'N', M, N, M, RMUL,
     $                              A, MAXM, X, MAXM, -SCALE*RMUL,
     $                              CC, MAXM )
                        CALL CGEMM( 'N', TRANB, M, N, N,
     $                              REAL( ISGN )*RMUL, X, MAXM, B,
     $                              MAXN, CONE, CC, MAXM )
                        RES1 = CLANGE( 'M', M, N, CC, MAXM, DUM )
                        RES = RES1 / MAX( SMLNUM, SMLNUM*XNRM,
     $                        ( ( ABS( RMUL )*TNRM )*EPS )*XNRM )
                        IF( RES.GT.THRESH )
     $                     NFAIL( 1 ) = NFAIL( 1 ) + 1
                        IF( RES.GT.RMAX( 1 ) )
     $                     RMAX( 1 ) = RES
*
                        CALL CLACPY( 'All', M, N, C, MAXM, X, MAXM )
                        CALL CLACPY( 'All', M, N, C, MAXM, CC, MAXM )
                        CALL CTRSYL3( TRANA, TRANB, ISGN, M, N,
     $                                A, MAXM, B, MAXN, X, MAXM,
     $                                SCALE3, SWORK, LDSWORK, INFO)
                        IF( INFO.NE.0 )
     $                     NINFO( 2 ) = NINFO( 2 ) + 1
                        XNRM = CLANGE( 'M', M, N, X, MAXM, DUM )
                        RMUL = CONE
                        IF( XNRM.GT.ONE .AND. TNRM.GT.ONE ) THEN
                           IF( XNRM.GT.BIGNUM / TNRM ) THEN
                              RMUL = CONE / MAX( XNRM, TNRM )
                           END IF
                        END IF
                        CALL CGEMM( TRANA, 'N', M, N, M, RMUL,
     $                              A, MAXM, X, MAXM, -SCALE3*RMUL,
     $                              CC, MAXM )
                        CALL CGEMM( 'N', TRANB, M, N, N,
     $                              REAL( ISGN )*RMUL, X, MAXM, B,
     $                              MAXN, CONE, CC, MAXM )
                        RES1 = CLANGE( 'M', M, N, CC, MAXM, DUM )
                        RES = RES1 / MAX( SMLNUM, SMLNUM*XNRM,
     $                             ( ( ABS( RMUL )*TNRM )*EPS )*XNRM )
*                       Verify that TRSYL3 only flushes if TRSYL flushes (but
*                       there may be cases where TRSYL3 avoid flushing).
                        IF( SCALE3.EQ.ZERO .AND. SCALE.GT.ZERO .OR. 
     $                      IINFO.NE.INFO ) THEN
                           NFAIL( 3 ) = NFAIL( 3 ) + 1
                        END IF
                        IF( RES.GT.THRESH .OR. SISNAN( RES ) )
     $                     NFAIL( 2 ) = NFAIL( 2 ) + 1
                        IF( RES.GT.RMAX( 2 ) )
     $                     RMAX( 2 ) = RES
                     END DO
                  END DO
               END DO
            END DO
         END DO
      END DO
*
      DEALLOCATE (A, STAT = AllocateStatus)
      DEALLOCATE (B, STAT = AllocateStatus)
      DEALLOCATE (C, STAT = AllocateStatus)
      DEALLOCATE (CC, STAT = AllocateStatus)
      DEALLOCATE (X, STAT = AllocateStatus)
      DEALLOCATE (SWORK, STAT = AllocateStatus)
*
      RETURN
*
*     End of CSYL01
*
      END