numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/dchkdmd.f90 | 29667B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
! This is a test program for checking the implementations of ! the implementations of the following subroutines ! ! DGEDMD for computation of the ! Dynamic Mode Decomposition (DMD) ! DGEDMDQ for computation of a ! QR factorization based compressed DMD ! ! Developed and supported by: ! =========================== ! Developed and coded by Zlatko Drmac, Faculty of Science, ! University of Zagreb; drmac@math.hr ! In cooperation with ! AIMdyn Inc., Santa Barbara, CA. ! ======================================================== ! How to run the code (compiler, link info) ! ======================================================== ! Compile as FORTRAN 90 (or later) and link with BLAS and ! LAPACK libraries. ! NOTE: The code is developed and tested on top of the ! Intel MKL library (versions 2022.0.3 and 2022.2.0), ! using the Intel Fortran compiler. ! ! For developers of the C++ implementation ! ======================================================== ! See the LAPACK++ and Template Numerical Toolkit (TNT) ! ! Note on a development of the GPU HP implementation ! ======================================================== ! Work in progress. See CUDA, MAGMA, SLATE. ! NOTE: The four SVD subroutines used in this code are ! included as a part of R&D and for the completeness. ! This was also an opportunity to test those SVD codes. ! If the scaling option is used all four are essentially ! equally good. For implementations on HP platforms, ! one can use whichever SVD is available. !... ......................................................... ! NOTE: ! When using the Intel MKL 2022.0.3 the subroutine xGESVDQ ! (optionally used in xGEDMD) may cause access violation ! error for x = S, D, C, Z, but only if called with the ! work space query. (At least in our Windows 10 MSVS 2019.) ! The problem can be mitigated by downloading the source ! code of xGESVDQ from the LAPACK repository and use it ! localy instead of the one in the MKL. This seems to ! indicate that the problem is indeed in the MKL. ! This problem did not appear whith Intel MKL 2022.2.0. ! ! NOTE: ! xGESDD seems to have a problem with workspace. In some ! cases the length of the optimal workspace is returned ! smaller than the minimal workspace, as specified in the ! code. As a precaution, all optimal workspaces are ! set as MAX(minimal, optimal). ! Latest implementations of complex xGESDD have different ! length of the real worksapce. We use max value over ! two versions. !............................................................ !............................................................ ! PROGRAM DMD_TEST use iso_fortran_env, only: real64 IMPLICIT NONE integer, parameter :: WP = real64 !............................................................ REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP !............................................................ REAL(KIND=WP), ALLOCATABLE, DIMENSION(:,:) :: & A, AC, EIGA, LAMBDA, LAMBDAQ, F, F1, F2,& Z, Z1, S, AU, W, VA, X, X0, Y, Y0, Y1 REAL(KIND=WP), ALLOCATABLE, DIMENSION(:) :: & DA, DL, DR, REIG, REIGA, REIGQ, IEIG, & IEIGA, IEIGQ, RES, RES1, RESEX, SINGVX,& SINGVQX, WORK INTEGER , ALLOCATABLE, DIMENSION(:) :: IWORK REAL(KIND=WP) :: AB(2,2), WDUMMY(2) INTEGER :: IDUMMY(2), ISEED(4), RJOBDATA(8) REAL(KIND=WP) :: ANORM, COND, CONDL, CONDR, DMAX, EPS, & TOL, TOL2, SVDIFF, TMP, TMP_AU, & TMP_FQR, TMP_REZ, TMP_REZQ, TMP_ZXW, & TMP_EX, XNORM, YNORM !............................................................ INTEGER :: K, KQ, LDF, LDS, LDA, LDAU, LDW, LDX, LDY, & LDZ, LIWORK, LWORK, M, N, L, LLOOP, NRNK INTEGER :: i, iJOBREF, iJOBZ, iSCALE, INFO, j, KDIFF, & NFAIL, NFAIL_AU, NFAIL_F_QR, NFAIL_REZ, & NFAIL_REZQ, NFAIL_SVDIFF, NFAIL_TOTAL, NFAILQ_TOTAL, & NFAIL_Z_XV, MODE, MODEL, MODER, WHTSVD INTEGER iNRNK, iWHTSVD, K_TRAJ, LWMINOPT CHARACTER(LEN=1) GRADE, JOBREF, JOBZ, PIVTNG, RSIGN, & SCALE, RESIDS, WANTQ, WANTR LOGICAL TEST_QRDMD !..... external subroutines (BLAS and LAPACK) EXTERNAL DAXPY, DGEEV, DGEMM, DGEMV, DLACPY, DLASCL EXTERNAL DLARNV, DLATMR !.....external subroutines DMD package, part 1 ! subroutines under test EXTERNAL DGEDMD, DGEDMDQ !..... external functions (BLAS and LAPACK) EXTERNAL DLAMCH, DLANGE, DNRM2 REAL(KIND=WP) :: DLAMCH, DLANGE, DNRM2 EXTERNAL LSAME LOGICAL LSAME INTRINSIC ABS, INT, MIN, MAX !............................................................ ! The test is always in pairs : ( DGEDMD and DGEDMDQ ) ! because the test includes comparing the results (in pairs). !..................................................................................... TEST_QRDMD = .TRUE. ! This code by default performs tests on DGEDMDQ ! Since the QR factorizations based algorithm is designed for ! single trajectory data, only single trajectory tests will ! be performed with xGEDMDQ. WANTQ = 'Q' WANTR = 'R' !................................................................................. EPS = DLAMCH( 'P' ) ! machine precision DP ! Global counters of failures of some particular tests NFAIL = 0 NFAIL_REZ = 0 NFAIL_REZQ = 0 NFAIL_Z_XV = 0 NFAIL_F_QR = 0 NFAIL_AU = 0 KDIFF = 0 NFAIL_SVDIFF = 0 NFAIL_TOTAL = 0 NFAILQ_TOTAL = 0 DO LLOOP = 1, 4 WRITE(*,*) 'L Loop Index = ', LLOOP ! Set the dimensions of the problem ... WRITE(*,*) 'M = ' READ(*,*) M WRITE(*,*) M ! ... and the number of snapshots. WRITE(*,*) 'N = ' READ(*,*) N WRITE(*,*) N ! ... Test the dimensions IF ( ( MIN(M,N) == 0 ) .OR. ( M < N ) ) THEN WRITE(*,*) 'Bad dimensions. Required: M >= N > 0.' STOP END IF !............. ! The seed inside the LLOOP so that each pass can be reproduced easily. ISEED(1) = 4 ISEED(2) = 3 ISEED(3) = 2 ISEED(4) = 1 LDA = M LDF = M LDX = MAX(M,N+1) LDY = MAX(M,N+1) LDW = N LDZ = M LDAU = MAX(M,N+1) LDS = N TMP_ZXW = ZERO TMP_AU = ZERO TMP_REZ = ZERO TMP_REZQ = ZERO SVDIFF = ZERO TMP_EX = ZERO ! ! Test the subroutines on real data snapshots. All ! computation is done in real arithmetic, even when ! Koopman eigenvalues and modes are real. ! ! Allocate memory space ALLOCATE( A(LDA,M) ) ALLOCATE( AC(LDA,M) ) ALLOCATE( DA(M) ) ALLOCATE( DL(M) ) ALLOCATE( F(LDF,N+1) ) ALLOCATE( F1(LDF,N+1) ) ALLOCATE( F2(LDF,N+1) ) ALLOCATE( X(LDX,N) ) ALLOCATE( X0(LDX,N) ) ALLOCATE( SINGVX(N) ) ALLOCATE( SINGVQX(N) ) ALLOCATE( Y(LDY,N+1) ) ALLOCATE( Y0(LDY,N+1) ) ALLOCATE( Y1(M,N+1) ) ALLOCATE( Z(LDZ,N) ) ALLOCATE( Z1(LDZ,N) ) ALLOCATE( RES(N) ) ALLOCATE( RES1(N) ) ALLOCATE( RESEX(N) ) ALLOCATE( REIG(N) ) ALLOCATE( IEIG(N) ) ALLOCATE( REIGQ(N) ) ALLOCATE( IEIGQ(N) ) ALLOCATE( REIGA(M) ) ALLOCATE( IEIGA(M) ) ALLOCATE( VA(LDA,M) ) ALLOCATE( LAMBDA(N,2) ) ALLOCATE( LAMBDAQ(N,2) ) ALLOCATE( EIGA(M,2) ) ALLOCATE( W(LDW,N) ) ALLOCATE( AU(LDAU,N) ) ALLOCATE( S(N,N) ) TOL = M*EPS ! This mimics O(M*N)*EPS bound for accumulated roundoff error. ! The factor 10 is somewhat arbitrary. TOL2 = 10*M*N*EPS !............. DO K_TRAJ = 1, 2 ! Number of intial conditions in the simulation/trajectories (1 or 2) COND = 1.0D8 DMAX = 1.0D2 RSIGN = 'F' GRADE = 'N' MODEL = 6 CONDL = 1.0D2 MODER = 6 CONDR = 1.0D2 PIVTNG = 'N' ! Loop over all parameter MODE values for ZLATMR (+1,..,+6) DO MODE = 1, 6 ALLOCATE( IWORK(2*M) ) ALLOCATE(DR(N)) CALL DLATMR( M, M, 'S', ISEED, 'N', DA, MODE, COND, & DMAX, RSIGN, GRADE, DL, MODEL, CONDL, & DR, MODER, CONDR, PIVTNG, IWORK, M, M, & ZERO, -ONE, 'N', A, LDA, IWORK(M+1), INFO ) DEALLOCATE(IWORK) DEALLOCATE(DR) LWORK = 4*M+1 ALLOCATE(WORK(LWORK)) AC = A CALL DGEEV( 'N','V', M, AC, M, REIGA, IEIGA, VA, M, & VA, M, WORK, LWORK, INFO ) ! LAPACK CALL DEALLOCATE(WORK) TMP = ZERO DO i = 1, M EIGA(i,1) = REIGA(i) EIGA(i,2) = IEIGA(i) TMP = MAX( TMP, SQRT(REIGA(i)**2+IEIGA(i)**2)) END DO ! Scale A to have the desirable spectral radius. CALL DLASCL( 'G', 0, 0, TMP, ONE, M, M, A, M, INFO ) CALL DLASCL( 'G', 0, 0, TMP, ONE, M, 2, EIGA, M, INFO ) ! Compute the norm of A ANORM = DLANGE( 'F', N, N, A, M, WDUMMY ) IF ( K_TRAJ == 2 ) THEN ! generate data with two inital conditions CALL DLARNV(2, ISEED, M, F1(1,1) ) F1(1:M,1) = 1.0E-10*F1(1:M,1) DO i = 1, N/2 CALL DGEMV( 'N', M, M, ONE, A, M, F1(1,i), 1, ZERO, & F1(1,i+1), 1 ) END DO X0(1:M,1:N/2) = F1(1:M,1:N/2) Y0(1:M,1:N/2) = F1(1:M,2:N/2+1) CALL DLARNV(2, ISEED, M, F1(1,1) ) DO i = 1, N-N/2 CALL DGEMV( 'N', M, M, ONE, A, M, F1(1,i), 1, ZERO, & F1(1,i+1), 1 ) END DO X0(1:M,N/2+1:N) = F1(1:M,1:N-N/2) Y0(1:M,N/2+1:N) = F1(1:M,2:N-N/2+1) ELSE CALL DLARNV(2, ISEED, M, F(1,1) ) DO i = 1, N CALL DGEMV( 'N', M, M, ONE, A, M, F(1,i), 1, ZERO, & F(1,i+1), 1 ) END DO X0(1:M,1:N) = F(1:M,1:N) Y0(1:M,1:N) = F(1:M,2:N+1) END IF XNORM = DLANGE( 'F', M, N, X0, LDX, WDUMMY ) YNORM = DLANGE( 'F', M, N, Y0, LDX, WDUMMY ) !............................................................ DO iJOBZ = 1, 4 SELECT CASE ( iJOBZ ) CASE(1) JOBZ = 'V' ! Ritz vectors will be computed RESIDS = 'R' ! Residuals will be computed CASE(2) JOBZ = 'V' RESIDS = 'N' CASE(3) JOBZ = 'F' ! Ritz vectors in factored form RESIDS = 'N' CASE(4) JOBZ = 'N' RESIDS = 'N' END SELECT DO iJOBREF = 1, 3 SELECT CASE ( iJOBREF ) CASE(1) JOBREF = 'R' ! Data for refined Ritz vectors CASE(2) JOBREF = 'E' ! Exact DMD vectors CASE(3) JOBREF = 'N' END SELECT DO iSCALE = 1, 4 SELECT CASE ( iSCALE ) CASE(1) SCALE = 'S' ! X data normalized CASE(2) SCALE = 'C' ! X normalized, consist. check CASE(3) SCALE = 'Y' ! Y data normalized CASE(4) SCALE = 'N' END SELECT DO iNRNK = -1, -2, -1 ! Two truncation strategies. The "-2" case for R&D ! purposes only - it uses possibly low accuracy small ! singular values, in which case the formulas used in ! the DMD are highly sensitive. NRNK = iNRNK DO iWHTSVD = 1, 4 ! Check all four options to compute the POD basis ! via the SVD. WHTSVD = iWHTSVD DO LWMINOPT = 1, 2 ! Workspace query for the minimal (1) and for the optimal ! (2) workspace lengths determined by workspace query. X(1:M,1:N) = X0(1:M,1:N) Y(1:M,1:N) = Y0(1:M,1:N) ! DGEDMD: Workspace query and workspace allocation CALL DGEDMD( SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, M, & N, X, LDX, Y, LDY, NRNK, TOL, K, REIG, IEIG, Z, & LDZ, RES, AU, LDAU, W, LDW, S, LDS, WDUMMY, -1, & IDUMMY, -1, INFO ) LIWORK = IDUMMY(1) ALLOCATE( IWORK(LIWORK) ) LWORK = INT(WDUMMY(LWMINOPT)) ALLOCATE( WORK(LWORK) ) ! DGEDMD test: CALL DGEDMD CALL DGEDMD( SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, M, & N, X, LDX, Y, LDY, NRNK, TOL, K, REIG, IEIG, Z, & LDZ, RES, AU, LDAU, W, LDW, S, LDS, WORK, LWORK,& IWORK, LIWORK, INFO ) SINGVX(1:N) = WORK(1:N) !...... DGEDMD check point IF ( LSAME(JOBZ,'V') ) THEN ! Check that Z = X*W, on return from DGEDMD ! This checks that the returned aigenvectors in Z are ! the product of the SVD'POD basis returned in X ! and the eigenvectors of the rayleigh quotient ! returned in W CALL DGEMM( 'N', 'N', M, K, K, ONE, X, LDX, W, LDW, & ZERO, Z1, LDZ ) TMP = ZERO DO i = 1, K CALL DAXPY( M, -ONE, Z(1,i), 1, Z1(1,i), 1) TMP = MAX(TMP, DNRM2( M, Z1(1,i), 1 ) ) END DO TMP_ZXW = MAX(TMP_ZXW, TMP ) IF ( TMP_ZXW > 10*M*EPS ) THEN NFAIL_Z_XV = NFAIL_Z_XV + 1 WRITE(*,*) ':( .................DGEDMD FAILED!', & 'Check the code for implementation errors.' WRITE(*,*) 'The input parameters were ',& SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, & M, N, LDX, LDY, NRNK, TOL END IF END IF !...... DGEDMD check point IF ( LSAME(JOBREF,'R') ) THEN ! The matrix A*U is returned for computing refined Ritz vectors. ! Check that A*U is computed correctly using the formula ! A*U = Y * V * inv(SIGMA). This depends on the ! accuracy in the computed singular values and vectors of X. ! See the paper for an error analysis. ! Note that the left singular vectors of the input matrix X ! are returned in the array X. CALL DGEMM( 'N', 'N', M, K, M, ONE, A, LDA, X, LDX, & ZERO, Z1, LDZ ) TMP = ZERO DO i = 1, K CALL DAXPY( M, -ONE, AU(1,i), 1, Z1(1,i), 1) TMP = MAX( TMP, DNRM2( M, Z1(1,i),1 ) * & SINGVX(K)/(ANORM*SINGVX(1)) ) END DO TMP_AU = MAX( TMP_AU, TMP ) IF ( TMP > TOL2 ) THEN NFAIL_AU = NFAIL_AU + 1 WRITE(*,*) ':( .................DGEDMD FAILED!', & 'Check the code for implementation errors.' WRITE(*,*) 'The input parameters were ',& SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, & M, N, LDX, LDY, NRNK, TOL END IF ELSEIF ( LSAME(JOBREF,'E') ) THEN ! The unscaled vectors of the Exact DMD are computed. ! This option is included for the sake of completeness, ! for users who prefer the Exact DMD vectors. The ! returned vectors are in the real form, in the same way ! as the Ritz vectors. Here we just save the vectors ! and test them separately using a Matlab script. CALL DGEMM( 'N', 'N', M, K, M, ONE, A, LDA, AU, LDAU, ZERO, Y1, M ) i=1 DO WHILE ( i <= K ) IF ( IEIG(i) == ZERO ) THEN ! have a real eigenvalue with real eigenvector CALL DAXPY( M, -REIG(i), AU(1,i), 1, Y1(1,i), 1 ) RESEX(i) = DNRM2( M, Y1(1,i), 1) / DNRM2(M,AU(1,i),1) i = i + 1 ELSE ! Have a complex conjugate pair ! REIG(i) +- sqrt(-1)*IMEIG(i). ! Since all computation is done in real ! arithmetic, the formula for the residual ! is recast for real representation of the ! complex conjugate eigenpair. See the ! description of RES. AB(1,1) = REIG(i) AB(2,1) = -IEIG(i) AB(1,2) = IEIG(i) AB(2,2) = REIG(i) CALL DGEMM( 'N', 'N', M, 2, 2, -ONE, AU(1,i), & M, AB, 2, ONE, Y1(1,i), M ) RESEX(i) = DLANGE( 'F', M, 2, Y1(1,i), M, & WORK )/ DLANGE( 'F', M, 2, AU(1,i), M, & WORK ) RESEX(i+1) = RESEX(i) i = i + 2 END IF END DO END IF !...... DGEDMD check point IF ( LSAME(RESIDS, 'R') ) THEN ! Compare the residuals returned by DGEDMD with the ! explicitly computed residuals using the matrix A. ! Compute explicitly Y1 = A*Z CALL DGEMM( 'N', 'N', M, K, M, ONE, A, LDA, Z, LDZ, ZERO, Y1, M ) ! ... and then A*Z(:,i) - LAMBDA(i)*Z(:,i), using the real forms ! of the invariant subspaces that correspond to complex conjugate ! pairs of eigencalues. (See the description of Z in DGEDMD,) i = 1 DO WHILE ( i <= K ) IF ( IEIG(i) == ZERO ) THEN ! have a real eigenvalue with real eigenvector CALL DAXPY( M, -REIG(i), Z(1,i), 1, Y1(1,i), 1 ) RES1(i) = DNRM2( M, Y1(1,i), 1) i = i + 1 ELSE ! Have a complex conjugate pair ! REIG(i) +- sqrt(-1)*IMEIG(i). ! Since all computation is done in real ! arithmetic, the formula for the residual ! is recast for real representation of the ! complex conjugate eigenpair. See the ! description of RES. AB(1,1) = REIG(i) AB(2,1) = -IEIG(i) AB(1,2) = IEIG(i) AB(2,2) = REIG(i) CALL DGEMM( 'N', 'N', M, 2, 2, -ONE, Z(1,i), & M, AB, 2, ONE, Y1(1,i), M ) RES1(i) = DLANGE( 'F', M, 2, Y1(1,i), M, & WORK ) RES1(i+1) = RES1(i) i = i + 2 END IF END DO TMP = ZERO DO i = 1, K TMP = MAX( TMP, ABS(RES(i) - RES1(i)) * & SINGVX(K)/(ANORM*SINGVX(1)) ) END DO TMP_REZ = MAX( TMP_REZ, TMP ) IF ( TMP > TOL2 ) THEN NFAIL_REZ = NFAIL_REZ + 1 WRITE(*,*) ':( ..................DGEDMD FAILED!', & 'Check the code for implementation errors.' WRITE(*,*) 'The input parameters were ',& SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, & M, N, LDX, LDY, NRNK, TOL END IF IF ( LSAME(JOBREF,'E') ) THEN TMP = ZERO DO i = 1, K TMP = MAX( TMP, ABS(RES1(i) - RESEX(i))/(RES1(i)+RESEX(i)) ) END DO TMP_EX = MAX(TMP_EX,TMP) END IF END IF !..... store the results for inspection DO i = 1, K LAMBDA(i,1) = REIG(i) LAMBDA(i,2) = IEIG(i) END DO DEALLOCATE(IWORK) DEALLOCATE(WORK) !====================================================================== ! Now test the DGEDMDQ !====================================================================== IF ( TEST_QRDMD .AND. (K_TRAJ == 1) ) THEN RJOBDATA(2) = 1 F1 = F ! DGEDMDQ test: Workspace query and workspace allocation CALL DGEDMDQ( SCALE, JOBZ, RESIDS, WANTQ, WANTR, & JOBREF, WHTSVD, M, N+1, F1, LDF, X, LDX, Y, & LDY, NRNK, TOL, KQ, REIGQ, IEIGQ, Z, LDZ, & RES, AU, LDAU, W, LDW, S, LDS, WDUMMY, & -1, IDUMMY, -1, INFO ) LIWORK = IDUMMY(1) ALLOCATE( IWORK(LIWORK) ) LWORK = INT(WDUMMY(LWMINOPT)) ALLOCATE(WORK(LWORK)) ! DGEDMDQ test: CALL DGEDMDQ CALL DGEDMDQ( SCALE, JOBZ, RESIDS, WANTQ, WANTR, & JOBREF, WHTSVD, M, N+1, F1, LDF, X, LDX, Y, & LDY, NRNK, TOL, KQ, REIGQ, IEIGQ, Z, LDZ, & RES, AU, LDAU, W, LDW, S, LDS, & WORK, LWORK, IWORK, LIWORK, INFO ) SINGVQX(1:KQ) = WORK(MIN(M,N+1)+1: MIN(M,N+1)+KQ) !..... DGEDMDQ check point IF ( KQ /= K ) THEN KDIFF = KDIFF+1 END IF TMP = ZERO DO i = 1, MIN(K, KQ) TMP = MAX(TMP, ABS(SINGVX(i)-SINGVQX(i)) / & SINGVX(1) ) END DO SVDIFF = MAX( SVDIFF, TMP ) IF ( TMP > M*N*EPS ) THEN WRITE(*,*) 'FAILED! Something was wrong with the run.' NFAIL_SVDIFF = NFAIL_SVDIFF + 1 DO j =1, 3 write(*,*) j, SINGVX(j), SINGVQX(j) read(*,*) END DO END IF !..... DGEDMDQ check point IF ( LSAME(WANTQ,'Q') .AND. LSAME(WANTR,'R') ) THEN ! Check that the QR factors are computed and returned ! as requested. The residual ||F-Q*R||_F / ||F||_F ! is compared to M*N*EPS. F2 = F CALL DGEMM( 'N', 'N', M, N+1, MIN(M,N+1), -ONE, F1, & LDF, Y, LDY, ONE, F2, LDF ) TMP_FQR = DLANGE( 'F', M, N+1, F2, LDF, WORK ) / & DLANGE( 'F', M, N+1, F, LDF, WORK ) IF ( TMP_FQR > TOL2 ) THEN WRITE(*,*) 'FAILED! Something was wrong with the run.' NFAIL_F_QR = NFAIL_F_QR + 1 END IF END IF !..... DGEDMDQ check point IF ( LSAME(RESIDS, 'R') ) THEN ! Compare the residuals returned by DGEDMDQ with the ! explicitly computed residuals using the matrix A. ! Compute explicitly Y1 = A*Z CALL DGEMM( 'N', 'N', M, KQ, M, ONE, A, M, Z, M, ZERO, Y1, M ) ! ... and then A*Z(:,i) - LAMBDA(i)*Z(:,i), using the real forms ! of the invariant subspaces that correspond to complex conjugate ! pairs of eigencalues. (See the description of Z in DGEDMDQ) i = 1 DO WHILE ( i <= KQ ) IF ( IEIGQ(i) == ZERO ) THEN ! have a real eigenvalue with real eigenvector CALL DAXPY( M, -REIGQ(i), Z(1,i), 1, Y1(1,i), 1 ) ! Y(1:M,i) = Y(1:M,i) - REIG(i)*Z(1:M,i) RES1(i) = DNRM2( M, Y1(1,i), 1) i = i + 1 ELSE ! Have a complex conjugate pair ! REIG(i) +- sqrt(-1)*IMEIG(i). ! Since all computation is done in real ! arithmetic, the formula for the residual ! is recast for real representation of the ! complex conjugate eigenpair. See the ! description of RES. AB(1,1) = REIGQ(i) AB(2,1) = -IEIGQ(i) AB(1,2) = IEIGQ(i) AB(2,2) = REIGQ(i) CALL DGEMM( 'N', 'N', M, 2, 2, -ONE, Z(1,i), & M, AB, 2, ONE, Y1(1,i), M ) ! BLAS CALL ! Y(1:M,i:i+1) = Y(1:M,i:i+1) - Z(1:M,i:i+1) * AB ! INTRINSIC RES1(i) = DLANGE( 'F', M, 2, Y1(1,i), M, & WORK ) ! LAPACK CALL RES1(i+1) = RES1(i) i = i + 2 END IF END DO TMP = ZERO DO i = 1, KQ TMP = MAX( TMP, ABS(RES(i) - RES1(i)) * & SINGVQX(K)/(ANORM*SINGVQX(1)) ) END DO TMP_REZQ = MAX( TMP_REZQ, TMP ) IF ( TMP > TOL2 ) THEN NFAIL_REZQ = NFAIL_REZQ + 1 WRITE(*,*) '................ DGEDMDQ FAILED!', & 'Check the code for implementation errors.' STOP END IF END IF DO i = 1, KQ LAMBDAQ(i,1) = REIGQ(i) LAMBDAQ(i,2) = IEIGQ(i) END DO DEALLOCATE(WORK) DEALLOCATE(IWORK) END IF ! TEST_QRDMD !====================================================================== END DO ! LWMINOPT !write(*,*) 'LWMINOPT loop completed' END DO ! WHTSVD LOOP !write(*,*) 'WHTSVD loop completed' END DO ! NRNK LOOP !write(*,*) 'NRNK loop completed' END DO ! SCALE LOOP !write(*,*) 'SCALE loop completed' END DO ! JOBF LOOP !write(*,*) 'JOBREF loop completed' END DO ! JOBZ LOOP !write(*,*) 'JOBZ loop completed' END DO ! MODE -6:6 !write(*,*) 'MODE loop completed' END DO ! 1 or 2 trajectories !write(*,*) 'trajectories loop completed' DEALLOCATE(A) DEALLOCATE(AC) DEALLOCATE(DA) DEALLOCATE(DL) DEALLOCATE(F) DEALLOCATE(F1) DEALLOCATE(F2) DEALLOCATE(X) DEALLOCATE(X0) DEALLOCATE(SINGVX) DEALLOCATE(SINGVQX) DEALLOCATE(Y) DEALLOCATE(Y0) DEALLOCATE(Y1) DEALLOCATE(Z) DEALLOCATE(Z1) DEALLOCATE(RES) DEALLOCATE(RES1) DEALLOCATE(RESEX) DEALLOCATE(REIG) DEALLOCATE(IEIG) DEALLOCATE(REIGQ) DEALLOCATE(IEIGQ) DEALLOCATE(REIGA) DEALLOCATE(IEIGA) DEALLOCATE(VA) DEALLOCATE(LAMBDA) DEALLOCATE(LAMBDAQ) DEALLOCATE(EIGA) DEALLOCATE(W) DEALLOCATE(AU) DEALLOCATE(S) !............................................................ ! Generate random M-by-M matrix A. Use DLATMR from END DO ! LLOOP WRITE(*,*) '>>>>>>>>>>>>>>>>>>>>>>>>>>' WRITE(*,*) ' Test summary for DGEDMD :' WRITE(*,*) '>>>>>>>>>>>>>>>>>>>>>>>>>>' WRITE(*,*) IF ( NFAIL_Z_XV == 0 ) THEN WRITE(*,*) '>>>> Z - U*V test PASSED.' ELSE WRITE(*,*) 'Z - U*V test FAILED ', NFAIL_Z_XV, ' time(s)' WRITE(*,*) 'Max error ||Z-U*V||_F was ', TMP_ZXW NFAIL_TOTAL = NFAIL_TOTAL + NFAIL_Z_XV END IF IF ( NFAIL_AU == 0 ) THEN WRITE(*,*) '>>>> A*U test PASSED. ' ELSE WRITE(*,*) 'A*U test FAILED ', NFAIL_AU, ' time(s)' WRITE(*,*) 'Max A*U test adjusted error measure was ', TMP_AU WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS NFAIL_TOTAL = NFAIL_TOTAL + NFAIL_AU END IF IF ( NFAIL_REZ == 0 ) THEN WRITE(*,*) '>>>> Rezidual computation test PASSED.' ELSE WRITE(*,*) 'Rezidual computation test FAILED ', NFAIL_REZ, 'time(s)' WRITE(*,*) 'Max residual computing test adjusted error measure was ', TMP_REZ WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS NFAIL_TOTAL = NFAIL_TOTAL + NFAIL_REZ END IF IF ( NFAIL_TOTAL == 0 ) THEN WRITE(*,*) '>>>> DGEDMD :: ALL TESTS PASSED.' ELSE WRITE(*,*) NFAIL_TOTAL, 'FAILURES!' WRITE(*,*) '>>>>>>>>>>>>>> DGEDMD :: TESTS FAILED. CHECK THE IMPLEMENTATION.' END IF IF ( TEST_QRDMD ) THEN WRITE(*,*) WRITE(*,*) '>>>>>>>>>>>>>>>>>>>>>>>>>>' WRITE(*,*) ' Test summary for DGEDMDQ :' WRITE(*,*) '>>>>>>>>>>>>>>>>>>>>>>>>>>' WRITE(*,*) IF ( NFAIL_SVDIFF == 0 ) THEN WRITE(*,*) '>>>> DGEDMD and DGEDMDQ computed singular & &values test PASSED.' ELSE WRITE(*,*) 'DGEDMD and DGEDMDQ discrepancies in & &the singular values unacceptable ', & NFAIL_SVDIFF, ' times. Test FAILED.' WRITE(*,*) 'The maximal discrepancy in the singular values (relative to the norm) was ', SVDIFF WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS NFAILQ_TOTAL = NFAILQ_TOTAL + NFAIL_SVDIFF END IF IF ( NFAIL_F_QR == 0 ) THEN WRITE(*,*) '>>>> F - Q*R test PASSED.' ELSE WRITE(*,*) 'F - Q*R test FAILED ', NFAIL_F_QR, ' time(s)' WRITE(*,*) 'The largest relative residual was ', TMP_FQR WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS NFAILQ_TOTAL = NFAILQ_TOTAL + NFAIL_F_QR END IF IF ( NFAIL_REZQ == 0 ) THEN WRITE(*,*) '>>>> Rezidual computation test PASSED.' ELSE WRITE(*,*) 'Rezidual computation test FAILED ', NFAIL_REZQ, 'time(s)' WRITE(*,*) 'Max residual computing test adjusted error measure was ', TMP_REZQ WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS NFAILQ_TOTAL = NFAILQ_TOTAL + NFAIL_REZQ END IF IF ( NFAILQ_TOTAL == 0 ) THEN WRITE(*,*) '>>>>>>> DGEDMDQ :: ALL TESTS PASSED.' ELSE WRITE(*,*) NFAILQ_TOTAL, 'FAILURES!' WRITE(*,*) '>>>>>>> DGEDMDQ :: TESTS FAILED. CHECK THE IMPLEMENTATION.' END IF END IF WRITE(*,*) WRITE(*,*) 'Test completed.' STOP END