numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/ddrgvx.f | 25250B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
*> \brief \b DDRGVX * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DDRGVX( NSIZE, THRESH, NIN, NOUT, A, LDA, B, AI, BI, * ALPHAR, ALPHAI, BETA, VL, VR, ILO, IHI, LSCALE, * RSCALE, S, DTRU, DIF, DIFTRU, WORK, LWORK, * IWORK, LIWORK, RESULT, BWORK, INFO ) * * .. Scalar Arguments .. * INTEGER IHI, ILO, INFO, LDA, LIWORK, LWORK, NIN, NOUT, * $ NSIZE * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL BWORK( * ) * INTEGER IWORK( * ) * DOUBLE PRECISION A( LDA, * ), AI( LDA, * ), ALPHAI( * ), * $ ALPHAR( * ), B( LDA, * ), BETA( * ), * $ BI( LDA, * ), DIF( * ), DIFTRU( * ), DTRU( * ), * $ LSCALE( * ), RESULT( 4 ), RSCALE( * ), S( * ), * $ VL( LDA, * ), VR( LDA, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DDRGVX checks the nonsymmetric generalized eigenvalue problem *> expert driver DGGEVX. *> *> DGGEVX computes the generalized eigenvalues, (optionally) the left *> and/or right eigenvectors, (optionally) computes a balancing *> transformation to improve the conditioning, and (optionally) *> reciprocal condition numbers for the eigenvalues and eigenvectors. *> *> When DDRGVX is called with NSIZE > 0, two types of test matrix pairs *> are generated by the subroutine DLATM6 and test the driver DGGEVX. *> The test matrices have the known exact condition numbers for *> eigenvalues. For the condition numbers of the eigenvectors *> corresponding the first and last eigenvalues are also know *> ``exactly'' (see DLATM6). *> *> For each matrix pair, the following tests will be performed and *> compared with the threshold THRESH. *> *> (1) max over all left eigenvalue/-vector pairs (beta/alpha,l) of *> *> | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) ) *> *> where l**H is the conjugate transpose of l. *> *> (2) max over all right eigenvalue/-vector pairs (beta/alpha,r) of *> *> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) ) *> *> (3) The condition number S(i) of eigenvalues computed by DGGEVX *> differs less than a factor THRESH from the exact S(i) (see *> DLATM6). *> *> (4) DIF(i) computed by DTGSNA differs less than a factor 10*THRESH *> from the exact value (for the 1st and 5th vectors only). *> *> Test Matrices *> ============= *> *> Two kinds of test matrix pairs *> *> (A, B) = inverse(YH) * (Da, Db) * inverse(X) *> *> are used in the tests: *> *> 1: Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 *> 0 2+a 0 0 0 0 1 0 0 0 *> 0 0 3+a 0 0 0 0 1 0 0 *> 0 0 0 4+a 0 0 0 0 1 0 *> 0 0 0 0 5+a , 0 0 0 0 1 , and *> *> 2: Da = 1 -1 0 0 0 Db = 1 0 0 0 0 *> 1 1 0 0 0 0 1 0 0 0 *> 0 0 1 0 0 0 0 1 0 0 *> 0 0 0 1+a 1+b 0 0 0 1 0 *> 0 0 0 -1-b 1+a , 0 0 0 0 1 . *> *> In both cases the same inverse(YH) and inverse(X) are used to compute *> (A, B), giving the exact eigenvectors to (A,B) as (YH, X): *> *> YH: = 1 0 -y y -y X = 1 0 -x -x x *> 0 1 -y y -y 0 1 x -x -x *> 0 0 1 0 0 0 0 1 0 0 *> 0 0 0 1 0 0 0 0 1 0 *> 0 0 0 0 1, 0 0 0 0 1 , where *> *> a, b, x and y will have all values independently of each other from *> { sqrt(sqrt(ULP)), 0.1, 1, 10, 1/sqrt(sqrt(ULP)) }. *> \endverbatim * * Arguments: * ========== * *> \param[in] NSIZE *> \verbatim *> NSIZE is INTEGER *> The number of sizes of matrices to use. NSIZE must be at *> least zero. If it is zero, no randomly generated matrices *> are tested, but any test matrices read from NIN will be *> tested. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] NIN *> \verbatim *> NIN is INTEGER *> The FORTRAN unit number for reading in the data file of *> problems to solve. *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> \endverbatim *> *> \param[out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA, NSIZE) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually used. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A, B, AI, BI, Ao, and Bo. *> It must be at least 1 and at least NSIZE. *> \endverbatim *> *> \param[out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDA, NSIZE) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, B contains the last matrix actually used. *> \endverbatim *> *> \param[out] AI *> \verbatim *> AI is DOUBLE PRECISION array, dimension (LDA, NSIZE) *> Copy of A, modified by DGGEVX. *> \endverbatim *> *> \param[out] BI *> \verbatim *> BI is DOUBLE PRECISION array, dimension (LDA, NSIZE) *> Copy of B, modified by DGGEVX. *> \endverbatim *> *> \param[out] ALPHAR *> \verbatim *> ALPHAR is DOUBLE PRECISION array, dimension (NSIZE) *> \endverbatim *> *> \param[out] ALPHAI *> \verbatim *> ALPHAI is DOUBLE PRECISION array, dimension (NSIZE) *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is DOUBLE PRECISION array, dimension (NSIZE) *> *> On exit, (ALPHAR + ALPHAI*i)/BETA are the eigenvalues. *> \endverbatim *> *> \param[out] VL *> \verbatim *> VL is DOUBLE PRECISION array, dimension (LDA, NSIZE) *> VL holds the left eigenvectors computed by DGGEVX. *> \endverbatim *> *> \param[out] VR *> \verbatim *> VR is DOUBLE PRECISION array, dimension (LDA, NSIZE) *> VR holds the right eigenvectors computed by DGGEVX. *> \endverbatim *> *> \param[out] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[out] IHI *> \verbatim *> IHI is INTEGER *> \endverbatim *> *> \param[out] LSCALE *> \verbatim *> LSCALE is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RSCALE *> \verbatim *> RSCALE is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] S *> \verbatim *> S is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] DTRU *> \verbatim *> DTRU is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] DIF *> \verbatim *> DIF is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] DIFTRU *> \verbatim *> DIFTRU is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> Leading dimension of WORK. LWORK >= 2*N*N+12*N+16. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (LIWORK) *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER *> Leading dimension of IWORK. Must be at least N+6. *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (4) *> \endverbatim *> *> \param[out] BWORK *> \verbatim *> BWORK is LOGICAL array, dimension (N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: A routine returned an error code. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DDRGVX( NSIZE, THRESH, NIN, NOUT, A, LDA, B, AI, BI, $ ALPHAR, ALPHAI, BETA, VL, VR, ILO, IHI, LSCALE, $ RSCALE, S, DTRU, DIF, DIFTRU, WORK, LWORK, $ IWORK, LIWORK, RESULT, BWORK, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IHI, ILO, INFO, LDA, LIWORK, LWORK, NIN, NOUT, $ NSIZE DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), AI( LDA, * ), ALPHAI( * ), $ ALPHAR( * ), B( LDA, * ), BETA( * ), $ BI( LDA, * ), DIF( * ), DIFTRU( * ), DTRU( * ), $ LSCALE( * ), RESULT( 4 ), RSCALE( * ), S( * ), $ VL( LDA, * ), VR( LDA, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TEN, TNTH, HALF PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1, $ TNTH = 1.0D-1, HALF = 0.5D+0 ) * .. * .. Local Scalars .. INTEGER I, IPTYPE, IWA, IWB, IWX, IWY, J, LINFO, $ MAXWRK, MINWRK, N, NERRS, NMAX, NPTKNT, NTESTT DOUBLE PRECISION ABNORM, ANORM, BNORM, RATIO1, RATIO2, THRSH2, $ ULP, ULPINV * .. * .. Local Arrays .. DOUBLE PRECISION WEIGHT( 5 ) * .. * .. External Functions .. INTEGER ILAENV DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL ILAENV, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL ALASVM, DGET52, DGGEVX, DLACPY, DLATM6, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. * .. Executable Statements .. * * Check for errors * INFO = 0 * NMAX = 5 * IF( NSIZE.LT.0 ) THEN INFO = -1 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -2 ELSE IF( NIN.LE.0 ) THEN INFO = -3 ELSE IF( NOUT.LE.0 ) THEN INFO = -4 ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN INFO = -6 ELSE IF( LIWORK.LT.NMAX+6 ) THEN INFO = -26 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV.) * MINWRK = 1 IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN MINWRK = 2*NMAX*NMAX + 12*NMAX + 16 MAXWRK = 6*NMAX + NMAX*ILAENV( 1, 'DGEQRF', ' ', NMAX, 1, NMAX, $ 0 ) MAXWRK = MAX( MAXWRK, 2*NMAX*NMAX+12*NMAX+16 ) WORK( 1 ) = MAXWRK END IF * IF( LWORK.LT.MINWRK ) $ INFO = -24 * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DDRGVX', -INFO ) RETURN END IF * N = 5 ULP = DLAMCH( 'P' ) ULPINV = ONE / ULP THRSH2 = TEN*THRESH NERRS = 0 NPTKNT = 0 NTESTT = 0 * IF( NSIZE.EQ.0 ) $ GO TO 90 * * Parameters used for generating test matrices. * WEIGHT( 1 ) = TNTH WEIGHT( 2 ) = HALF WEIGHT( 3 ) = ONE WEIGHT( 4 ) = ONE / WEIGHT( 2 ) WEIGHT( 5 ) = ONE / WEIGHT( 1 ) * DO 80 IPTYPE = 1, 2 DO 70 IWA = 1, 5 DO 60 IWB = 1, 5 DO 50 IWX = 1, 5 DO 40 IWY = 1, 5 * * generated a test matrix pair * CALL DLATM6( IPTYPE, 5, A, LDA, B, VR, LDA, VL, $ LDA, WEIGHT( IWA ), WEIGHT( IWB ), $ WEIGHT( IWX ), WEIGHT( IWY ), DTRU, $ DIFTRU ) * * Compute eigenvalues/eigenvectors of (A, B). * Compute eigenvalue/eigenvector condition numbers * using computed eigenvectors. * CALL DLACPY( 'F', N, N, A, LDA, AI, LDA ) CALL DLACPY( 'F', N, N, B, LDA, BI, LDA ) * CALL DGGEVX( 'N', 'V', 'V', 'B', N, AI, LDA, BI, $ LDA, ALPHAR, ALPHAI, BETA, VL, LDA, $ VR, LDA, ILO, IHI, LSCALE, RSCALE, $ ANORM, BNORM, S, DIF, WORK, LWORK, $ IWORK, BWORK, LINFO ) IF( LINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUT, FMT = 9999 )'DGGEVX', LINFO, N, $ IPTYPE GO TO 30 END IF * * Compute the norm(A, B) * CALL DLACPY( 'Full', N, N, AI, LDA, WORK, N ) CALL DLACPY( 'Full', N, N, BI, LDA, WORK( N*N+1 ), $ N ) ABNORM = DLANGE( 'Fro', N, 2*N, WORK, N, WORK ) * * Tests (1) and (2) * RESULT( 1 ) = ZERO CALL DGET52( .TRUE., N, A, LDA, B, LDA, VL, LDA, $ ALPHAR, ALPHAI, BETA, WORK, $ RESULT( 1 ) ) IF( RESULT( 2 ).GT.THRESH ) THEN WRITE( NOUT, FMT = 9998 )'Left', 'DGGEVX', $ RESULT( 2 ), N, IPTYPE, IWA, IWB, IWX, IWY END IF * RESULT( 2 ) = ZERO CALL DGET52( .FALSE., N, A, LDA, B, LDA, VR, LDA, $ ALPHAR, ALPHAI, BETA, WORK, $ RESULT( 2 ) ) IF( RESULT( 3 ).GT.THRESH ) THEN WRITE( NOUT, FMT = 9998 )'Right', 'DGGEVX', $ RESULT( 3 ), N, IPTYPE, IWA, IWB, IWX, IWY END IF * * Test (3) * RESULT( 3 ) = ZERO DO 10 I = 1, N IF( S( I ).EQ.ZERO ) THEN IF( DTRU( I ).GT.ABNORM*ULP ) $ RESULT( 3 ) = ULPINV ELSE IF( DTRU( I ).EQ.ZERO ) THEN IF( S( I ).GT.ABNORM*ULP ) $ RESULT( 3 ) = ULPINV ELSE WORK( I ) = MAX( ABS( DTRU( I ) / S( I ) ), $ ABS( S( I ) / DTRU( I ) ) ) RESULT( 3 ) = MAX( RESULT( 3 ), WORK( I ) ) END IF 10 CONTINUE * * Test (4) * RESULT( 4 ) = ZERO IF( DIF( 1 ).EQ.ZERO ) THEN IF( DIFTRU( 1 ).GT.ABNORM*ULP ) $ RESULT( 4 ) = ULPINV ELSE IF( DIFTRU( 1 ).EQ.ZERO ) THEN IF( DIF( 1 ).GT.ABNORM*ULP ) $ RESULT( 4 ) = ULPINV ELSE IF( DIF( 5 ).EQ.ZERO ) THEN IF( DIFTRU( 5 ).GT.ABNORM*ULP ) $ RESULT( 4 ) = ULPINV ELSE IF( DIFTRU( 5 ).EQ.ZERO ) THEN IF( DIF( 5 ).GT.ABNORM*ULP ) $ RESULT( 4 ) = ULPINV ELSE RATIO1 = MAX( ABS( DIFTRU( 1 ) / DIF( 1 ) ), $ ABS( DIF( 1 ) / DIFTRU( 1 ) ) ) RATIO2 = MAX( ABS( DIFTRU( 5 ) / DIF( 5 ) ), $ ABS( DIF( 5 ) / DIFTRU( 5 ) ) ) RESULT( 4 ) = MAX( RATIO1, RATIO2 ) END IF * NTESTT = NTESTT + 4 * * Print out tests which fail. * DO 20 J = 1, 4 IF( ( RESULT( J ).GE.THRSH2 .AND. J.GE.4 ) .OR. $ ( RESULT( J ).GE.THRESH .AND. J.LE.3 ) ) $ THEN * * If this is the first test to fail, * print a header to the data file. * IF( NERRS.EQ.0 ) THEN WRITE( NOUT, FMT = 9997 )'DXV' * * Print out messages for built-in examples * * Matrix types * WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 ) WRITE( NOUT, FMT = 9993 ) * * Tests performed * WRITE( NOUT, FMT = 9992 )'''', $ 'transpose', '''' * END IF NERRS = NERRS + 1 IF( RESULT( J ).LT.10000.0D0 ) THEN WRITE( NOUT, FMT = 9991 )IPTYPE, IWA, $ IWB, IWX, IWY, J, RESULT( J ) ELSE WRITE( NOUT, FMT = 9990 )IPTYPE, IWA, $ IWB, IWX, IWY, J, RESULT( J ) END IF END IF 20 CONTINUE * 30 CONTINUE * 40 CONTINUE 50 CONTINUE 60 CONTINUE 70 CONTINUE 80 CONTINUE * GO TO 150 * 90 CONTINUE * * Read in data from file to check accuracy of condition estimation * Read input data until N=0 * READ( NIN, FMT = *, END = 150 )N IF( N.EQ.0 ) $ GO TO 150 DO 100 I = 1, N READ( NIN, FMT = * )( A( I, J ), J = 1, N ) 100 CONTINUE DO 110 I = 1, N READ( NIN, FMT = * )( B( I, J ), J = 1, N ) 110 CONTINUE READ( NIN, FMT = * )( DTRU( I ), I = 1, N ) READ( NIN, FMT = * )( DIFTRU( I ), I = 1, N ) * NPTKNT = NPTKNT + 1 * * Compute eigenvalues/eigenvectors of (A, B). * Compute eigenvalue/eigenvector condition numbers * using computed eigenvectors. * CALL DLACPY( 'F', N, N, A, LDA, AI, LDA ) CALL DLACPY( 'F', N, N, B, LDA, BI, LDA ) * CALL DGGEVX( 'N', 'V', 'V', 'B', N, AI, LDA, BI, LDA, ALPHAR, $ ALPHAI, BETA, VL, LDA, VR, LDA, ILO, IHI, LSCALE, $ RSCALE, ANORM, BNORM, S, DIF, WORK, LWORK, IWORK, $ BWORK, LINFO ) * IF( LINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUT, FMT = 9987 )'DGGEVX', LINFO, N, NPTKNT GO TO 140 END IF * * Compute the norm(A, B) * CALL DLACPY( 'Full', N, N, AI, LDA, WORK, N ) CALL DLACPY( 'Full', N, N, BI, LDA, WORK( N*N+1 ), N ) ABNORM = DLANGE( 'Fro', N, 2*N, WORK, N, WORK ) * * Tests (1) and (2) * RESULT( 1 ) = ZERO CALL DGET52( .TRUE., N, A, LDA, B, LDA, VL, LDA, ALPHAR, ALPHAI, $ BETA, WORK, RESULT( 1 ) ) IF( RESULT( 2 ).GT.THRESH ) THEN WRITE( NOUT, FMT = 9986 )'Left', 'DGGEVX', RESULT( 2 ), N, $ NPTKNT END IF * RESULT( 2 ) = ZERO CALL DGET52( .FALSE., N, A, LDA, B, LDA, VR, LDA, ALPHAR, ALPHAI, $ BETA, WORK, RESULT( 2 ) ) IF( RESULT( 3 ).GT.THRESH ) THEN WRITE( NOUT, FMT = 9986 )'Right', 'DGGEVX', RESULT( 3 ), N, $ NPTKNT END IF * * Test (3) * RESULT( 3 ) = ZERO DO 120 I = 1, N IF( S( I ).EQ.ZERO ) THEN IF( DTRU( I ).GT.ABNORM*ULP ) $ RESULT( 3 ) = ULPINV ELSE IF( DTRU( I ).EQ.ZERO ) THEN IF( S( I ).GT.ABNORM*ULP ) $ RESULT( 3 ) = ULPINV ELSE WORK( I ) = MAX( ABS( DTRU( I ) / S( I ) ), $ ABS( S( I ) / DTRU( I ) ) ) RESULT( 3 ) = MAX( RESULT( 3 ), WORK( I ) ) END IF 120 CONTINUE * * Test (4) * RESULT( 4 ) = ZERO IF( DIF( 1 ).EQ.ZERO ) THEN IF( DIFTRU( 1 ).GT.ABNORM*ULP ) $ RESULT( 4 ) = ULPINV ELSE IF( DIFTRU( 1 ).EQ.ZERO ) THEN IF( DIF( 1 ).GT.ABNORM*ULP ) $ RESULT( 4 ) = ULPINV ELSE IF( DIF( 5 ).EQ.ZERO ) THEN IF( DIFTRU( 5 ).GT.ABNORM*ULP ) $ RESULT( 4 ) = ULPINV ELSE IF( DIFTRU( 5 ).EQ.ZERO ) THEN IF( DIF( 5 ).GT.ABNORM*ULP ) $ RESULT( 4 ) = ULPINV ELSE RATIO1 = MAX( ABS( DIFTRU( 1 ) / DIF( 1 ) ), $ ABS( DIF( 1 ) / DIFTRU( 1 ) ) ) RATIO2 = MAX( ABS( DIFTRU( 5 ) / DIF( 5 ) ), $ ABS( DIF( 5 ) / DIFTRU( 5 ) ) ) RESULT( 4 ) = MAX( RATIO1, RATIO2 ) END IF * NTESTT = NTESTT + 4 * * Print out tests which fail. * DO 130 J = 1, 4 IF( RESULT( J ).GE.THRSH2 ) THEN * * If this is the first test to fail, * print a header to the data file. * IF( NERRS.EQ.0 ) THEN WRITE( NOUT, FMT = 9997 )'DXV' * * Print out messages for built-in examples * * Matrix types * WRITE( NOUT, FMT = 9996 ) * * Tests performed * WRITE( NOUT, FMT = 9992 )'''', 'transpose', '''' * END IF NERRS = NERRS + 1 IF( RESULT( J ).LT.10000.0D0 ) THEN WRITE( NOUT, FMT = 9989 )NPTKNT, N, J, RESULT( J ) ELSE WRITE( NOUT, FMT = 9988 )NPTKNT, N, J, RESULT( J ) END IF END IF 130 CONTINUE * 140 CONTINUE * GO TO 90 150 CONTINUE * * Summary * CALL ALASVM( 'DXV', NOUT, NERRS, NTESTT, 0 ) * WORK( 1 ) = MAXWRK * RETURN * 9999 FORMAT( ' DDRGVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ')' ) * 9998 FORMAT( ' DDRGVX: ', A, ' Eigenvectors from ', A, ' incorrectly ', $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X, $ 'N=', I6, ', JTYPE=', I6, ', IWA=', I5, ', IWB=', I5, $ ', IWX=', I5, ', IWY=', I5 ) * 9997 FORMAT( / 1X, A3, ' -- Real Expert Eigenvalue/vector', $ ' problem driver' ) * 9996 FORMAT( ' Input Example' ) * 9995 FORMAT( ' Matrix types: ', / ) * 9994 FORMAT( ' TYPE 1: Da is diagonal, Db is identity, ', $ / ' A = Y^(-H) Da X^(-1), B = Y^(-H) Db X^(-1) ', $ / ' YH and X are left and right eigenvectors. ', / ) * 9993 FORMAT( ' TYPE 2: Da is quasi-diagonal, Db is identity, ', $ / ' A = Y^(-H) Da X^(-1), B = Y^(-H) Db X^(-1) ', $ / ' YH and X are left and right eigenvectors. ', / ) * 9992 FORMAT( / ' Tests performed: ', / 4X, $ ' a is alpha, b is beta, l is a left eigenvector, ', / 4X, $ ' r is a right eigenvector and ', A, ' means ', A, '.', $ / ' 1 = max | ( b A - a B )', A, ' l | / const.', $ / ' 2 = max | ( b A - a B ) r | / const.', $ / ' 3 = max ( Sest/Stru, Stru/Sest ) ', $ ' over all eigenvalues', / $ ' 4 = max( DIFest/DIFtru, DIFtru/DIFest ) ', $ ' over the 1st and 5th eigenvectors', / ) * 9991 FORMAT( ' Type=', I2, ',', ' IWA=', I2, ', IWB=', I2, ', IWX=', $ I2, ', IWY=', I2, ', result ', I2, ' is', 0P, F8.2 ) 9990 FORMAT( ' Type=', I2, ',', ' IWA=', I2, ', IWB=', I2, ', IWX=', $ I2, ', IWY=', I2, ', result ', I2, ' is', 1P, D10.3 ) 9989 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',', $ ' result ', I2, ' is', 0P, F8.2 ) 9988 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',', $ ' result ', I2, ' is', 1P, D10.3 ) 9987 FORMAT( ' DDRGVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', Input example #', I2, ')' ) * 9986 FORMAT( ' DDRGVX: ', A, ' Eigenvectors from ', A, ' incorrectly ', $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X, $ 'N=', I6, ', Input Example #', I2, ')' ) * * * End of DDRGVX * END