numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/EIG/ddrvvx.f 36046B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
*> \brief \b DDRVVX
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
*                          NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1,
*                          VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1,
*                          RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1,
*                          RESULT, WORK, NWORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
*      $                   NSIZES, NTYPES, NWORK
*       DOUBLE PRECISION   THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            DOTYPE( * )
*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
*       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
*      $                   RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
*      $                   RCNDV1( * ), RCONDE( * ), RCONDV( * ),
*      $                   RESULT( 11 ), SCALE( * ), SCALE1( * ),
*      $                   VL( LDVL, * ), VR( LDVR, * ), WI( * ),
*      $                   WI1( * ), WORK( * ), WR( * ), WR1( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    DDRVVX  checks the nonsymmetric eigenvalue problem expert driver
*>    DGEEVX.
*>
*>    DDRVVX uses both test matrices generated randomly depending on
*>    data supplied in the calling sequence, as well as on data
*>    read from an input file and including precomputed condition
*>    numbers to which it compares the ones it computes.
*>
*>    When DDRVVX is called, a number of matrix "sizes" ("n's") and a
*>    number of matrix "types" are specified in the calling sequence.
*>    For each size ("n") and each type of matrix, one matrix will be
*>    generated and used to test the nonsymmetric eigenroutines.  For
*>    each matrix, 9 tests will be performed:
*>
*>    (1)     | A * VR - VR * W | / ( n |A| ulp )
*>
*>      Here VR is the matrix of unit right eigenvectors.
*>      W is a block diagonal matrix, with a 1x1 block for each
*>      real eigenvalue and a 2x2 block for each complex conjugate
*>      pair.  If eigenvalues j and j+1 are a complex conjugate pair,
*>      so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
*>      2 x 2 block corresponding to the pair will be:
*>
*>              (  wr  wi  )
*>              ( -wi  wr  )
*>
*>      Such a block multiplying an n x 2 matrix  ( ur ui ) on the
*>      right will be the same as multiplying  ur + i*ui  by  wr + i*wi.
*>
*>    (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )
*>
*>      Here VL is the matrix of unit left eigenvectors, A**H is the
*>      conjugate transpose of A, and W is as above.
*>
*>    (3)     | |VR(i)| - 1 | / ulp and largest component real
*>
*>      VR(i) denotes the i-th column of VR.
*>
*>    (4)     | |VL(i)| - 1 | / ulp and largest component real
*>
*>      VL(i) denotes the i-th column of VL.
*>
*>    (5)     W(full) = W(partial)
*>
*>      W(full) denotes the eigenvalues computed when VR, VL, RCONDV
*>      and RCONDE are also computed, and W(partial) denotes the
*>      eigenvalues computed when only some of VR, VL, RCONDV, and
*>      RCONDE are computed.
*>
*>    (6)     VR(full) = VR(partial)
*>
*>      VR(full) denotes the right eigenvectors computed when VL, RCONDV
*>      and RCONDE are computed, and VR(partial) denotes the result
*>      when only some of VL and RCONDV are computed.
*>
*>    (7)     VL(full) = VL(partial)
*>
*>      VL(full) denotes the left eigenvectors computed when VR, RCONDV
*>      and RCONDE are computed, and VL(partial) denotes the result
*>      when only some of VR and RCONDV are computed.
*>
*>    (8)     0 if SCALE, ILO, IHI, ABNRM (full) =
*>                 SCALE, ILO, IHI, ABNRM (partial)
*>            1/ulp otherwise
*>
*>      SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
*>      (full) is when VR, VL, RCONDE and RCONDV are also computed, and
*>      (partial) is when some are not computed.
*>
*>    (9)     RCONDV(full) = RCONDV(partial)
*>
*>      RCONDV(full) denotes the reciprocal condition numbers of the
*>      right eigenvectors computed when VR, VL and RCONDE are also
*>      computed. RCONDV(partial) denotes the reciprocal condition
*>      numbers when only some of VR, VL and RCONDE are computed.
*>
*>    The "sizes" are specified by an array NN(1:NSIZES); the value of
*>    each element NN(j) specifies one size.
*>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*>    Currently, the list of possible types is:
*>
*>    (1)  The zero matrix.
*>    (2)  The identity matrix.
*>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
*>
*>    (4)  A diagonal matrix with evenly spaced entries
*>         1, ..., ULP  and random signs.
*>         (ULP = (first number larger than 1) - 1 )
*>    (5)  A diagonal matrix with geometrically spaced entries
*>         1, ..., ULP  and random signs.
*>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*>         and random signs.
*>
*>    (7)  Same as (4), but multiplied by a constant near
*>         the overflow threshold
*>    (8)  Same as (4), but multiplied by a constant near
*>         the underflow threshold
*>
*>    (9)  A matrix of the form  U' T U, where U is orthogonal and
*>         T has evenly spaced entries 1, ..., ULP with random signs
*>         on the diagonal and random O(1) entries in the upper
*>         triangle.
*>
*>    (10) A matrix of the form  U' T U, where U is orthogonal and
*>         T has geometrically spaced entries 1, ..., ULP with random
*>         signs on the diagonal and random O(1) entries in the upper
*>         triangle.
*>
*>    (11) A matrix of the form  U' T U, where U is orthogonal and
*>         T has "clustered" entries 1, ULP,..., ULP with random
*>         signs on the diagonal and random O(1) entries in the upper
*>         triangle.
*>
*>    (12) A matrix of the form  U' T U, where U is orthogonal and
*>         T has real or complex conjugate paired eigenvalues randomly
*>         chosen from ( ULP, 1 ) and random O(1) entries in the upper
*>         triangle.
*>
*>    (13) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
*>         with random signs on the diagonal and random O(1) entries
*>         in the upper triangle.
*>
*>    (14) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has geometrically spaced entries
*>         1, ..., ULP with random signs on the diagonal and random
*>         O(1) entries in the upper triangle.
*>
*>    (15) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
*>         with random signs on the diagonal and random O(1) entries
*>         in the upper triangle.
*>
*>    (16) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has real or complex conjugate paired
*>         eigenvalues randomly chosen from ( ULP, 1 ) and random
*>         O(1) entries in the upper triangle.
*>
*>    (17) Same as (16), but multiplied by a constant
*>         near the overflow threshold
*>    (18) Same as (16), but multiplied by a constant
*>         near the underflow threshold
*>
*>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
*>         If N is at least 4, all entries in first two rows and last
*>         row, and first column and last two columns are zero.
*>    (20) Same as (19), but multiplied by a constant
*>         near the overflow threshold
*>    (21) Same as (19), but multiplied by a constant
*>         near the underflow threshold
*>
*>    In addition, an input file will be read from logical unit number
*>    NIUNIT. The file contains matrices along with precomputed
*>    eigenvalues and reciprocal condition numbers for the eigenvalues
*>    and right eigenvectors. For these matrices, in addition to tests
*>    (1) to (9) we will compute the following two tests:
*>
*>   (10)  |RCONDV - RCDVIN| / cond(RCONDV)
*>
*>      RCONDV is the reciprocal right eigenvector condition number
*>      computed by DGEEVX and RCDVIN (the precomputed true value)
*>      is supplied as input. cond(RCONDV) is the condition number of
*>      RCONDV, and takes errors in computing RCONDV into account, so
*>      that the resulting quantity should be O(ULP). cond(RCONDV) is
*>      essentially given by norm(A)/RCONDE.
*>
*>   (11)  |RCONDE - RCDEIN| / cond(RCONDE)
*>
*>      RCONDE is the reciprocal eigenvalue condition number
*>      computed by DGEEVX and RCDEIN (the precomputed true value)
*>      is supplied as input.  cond(RCONDE) is the condition number
*>      of RCONDE, and takes errors in computing RCONDE into account,
*>      so that the resulting quantity should be O(ULP). cond(RCONDE)
*>      is essentially given by norm(A)/RCONDV.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NSIZES
*> \verbatim
*>          NSIZES is INTEGER
*>          The number of sizes of matrices to use.  NSIZES must be at
*>          least zero. If it is zero, no randomly generated matrices
*>          are tested, but any test matrices read from NIUNIT will be
*>          tested.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER array, dimension (NSIZES)
*>          An array containing the sizes to be used for the matrices.
*>          Zero values will be skipped.  The values must be at least
*>          zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*>          NTYPES is INTEGER
*>          The number of elements in DOTYPE. NTYPES must be at least
*>          zero. If it is zero, no randomly generated test matrices
*>          are tested, but and test matrices read from NIUNIT will be
*>          tested. If it is MAXTYP+1 and NSIZES is 1, then an
*>          additional type, MAXTYP+1 is defined, which is to use
*>          whatever matrix is in A.  This is only useful if
*>          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
*>          matrix of that size and of type j will be generated.
*>          If NTYPES is smaller than the maximum number of types
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
*>          MAXTYP will not be generated.  If NTYPES is larger
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*>          will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry ISEED specifies the seed of the random number
*>          generator. The array elements should be between 0 and 4095;
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
*>          be odd.  The random number generator uses a linear
*>          congruential sequence limited to small integers, and so
*>          should produce machine independent random numbers. The
*>          values of ISEED are changed on exit, and can be used in the
*>          next call to DDRVVX to continue the same random number
*>          sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is DOUBLE PRECISION
*>          A test will count as "failed" if the "error", computed as
*>          described above, exceeds THRESH.  Note that the error
*>          is scaled to be O(1), so THRESH should be a reasonably
*>          small multiple of 1, e.g., 10 or 100.  In particular,
*>          it should not depend on the precision (single vs. double)
*>          or the size of the matrix.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NIUNIT
*> \verbatim
*>          NIUNIT is INTEGER
*>          The FORTRAN unit number for reading in the data file of
*>          problems to solve.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*>          NOUNIT is INTEGER
*>          The FORTRAN unit number for printing out error messages
*>          (e.g., if a routine returns INFO not equal to 0.)
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension
*>                      (LDA, max(NN,12))
*>          Used to hold the matrix whose eigenvalues are to be
*>          computed.  On exit, A contains the last matrix actually used.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays A and H.
*>          LDA >= max(NN,12), since 12 is the dimension of the largest
*>          matrix in the precomputed input file.
*> \endverbatim
*>
*> \param[out] H
*> \verbatim
*>          H is DOUBLE PRECISION array, dimension
*>                      (LDA, max(NN,12))
*>          Another copy of the test matrix A, modified by DGEEVX.
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*>          WR is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] WI
*> \verbatim
*>          WI is DOUBLE PRECISION array, dimension (max(NN))
*>
*>          The real and imaginary parts of the eigenvalues of A.
*>          On exit, WR + WI*i are the eigenvalues of the matrix in A.
*> \endverbatim
*>
*> \param[out] WR1
*> \verbatim
*>          WR1 is DOUBLE PRECISION array, dimension (max(NN,12))
*> \endverbatim
*>
*> \param[out] WI1
*> \verbatim
*>          WI1 is DOUBLE PRECISION array, dimension (max(NN,12))
*>
*>          Like WR, WI, these arrays contain the eigenvalues of A,
*>          but those computed when DGEEVX only computes a partial
*>          eigendecomposition, i.e. not the eigenvalues and left
*>          and right eigenvectors.
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*>          VL is DOUBLE PRECISION array, dimension
*>                      (LDVL, max(NN,12))
*>          VL holds the computed left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*>          LDVL is INTEGER
*>          Leading dimension of VL. Must be at least max(1,max(NN,12)).
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*>          VR is DOUBLE PRECISION array, dimension
*>                      (LDVR, max(NN,12))
*>          VR holds the computed right eigenvectors.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*>          LDVR is INTEGER
*>          Leading dimension of VR. Must be at least max(1,max(NN,12)).
*> \endverbatim
*>
*> \param[out] LRE
*> \verbatim
*>          LRE is DOUBLE PRECISION array, dimension
*>                      (LDLRE, max(NN,12))
*>          LRE holds the computed right or left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDLRE
*> \verbatim
*>          LDLRE is INTEGER
*>          Leading dimension of LRE. Must be at least max(1,max(NN,12))
*> \endverbatim
*>
*> \param[out] RCONDV
*> \verbatim
*>          RCONDV is DOUBLE PRECISION array, dimension (N)
*>          RCONDV holds the computed reciprocal condition numbers
*>          for eigenvectors.
*> \endverbatim
*>
*> \param[out] RCNDV1
*> \verbatim
*>          RCNDV1 is DOUBLE PRECISION array, dimension (N)
*>          RCNDV1 holds more computed reciprocal condition numbers
*>          for eigenvectors.
*> \endverbatim
*>
*> \param[out] RCDVIN
*> \verbatim
*>          RCDVIN is DOUBLE PRECISION array, dimension (N)
*>          When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
*>          condition numbers for eigenvectors to be compared with
*>          RCONDV.
*> \endverbatim
*>
*> \param[out] RCONDE
*> \verbatim
*>          RCONDE is DOUBLE PRECISION array, dimension (N)
*>          RCONDE holds the computed reciprocal condition numbers
*>          for eigenvalues.
*> \endverbatim
*>
*> \param[out] RCNDE1
*> \verbatim
*>          RCNDE1 is DOUBLE PRECISION array, dimension (N)
*>          RCNDE1 holds more computed reciprocal condition numbers
*>          for eigenvalues.
*> \endverbatim
*>
*> \param[out] RCDEIN
*> \verbatim
*>          RCDEIN is DOUBLE PRECISION array, dimension (N)
*>          When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
*>          condition numbers for eigenvalues to be compared with
*>          RCONDE.
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*>          SCALE is DOUBLE PRECISION array, dimension (N)
*>          Holds information describing balancing of matrix.
*> \endverbatim
*>
*> \param[out] SCALE1
*> \verbatim
*>          SCALE1 is DOUBLE PRECISION array, dimension (N)
*>          Holds information describing balancing of matrix.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (11)
*>          The values computed by the seven tests described above.
*>          The values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (NWORK)
*> \endverbatim
*>
*> \param[in] NWORK
*> \verbatim
*>          NWORK is INTEGER
*>          The number of entries in WORK.  This must be at least
*>          max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) =
*>          max(    360     ,6*NN(j)+2*NN(j)**2)    for all j.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (2*max(NN,12))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          If 0,  then successful exit.
*>          If <0, then input parameter -INFO is incorrect.
*>          If >0, DLATMR, SLATMS, SLATME or DGET23 returned an error
*>                 code, and INFO is its absolute value.
*>
*>-----------------------------------------------------------------------
*>
*>     Some Local Variables and Parameters:
*>     ---- ----- --------- --- ----------
*>
*>     ZERO, ONE       Real 0 and 1.
*>     MAXTYP          The number of types defined.
*>     NMAX            Largest value in NN or 12.
*>     NERRS           The number of tests which have exceeded THRESH
*>     COND, CONDS,
*>     IMODE           Values to be passed to the matrix generators.
*>     ANORM           Norm of A; passed to matrix generators.
*>
*>     OVFL, UNFL      Overflow and underflow thresholds.
*>     ULP, ULPINV     Finest relative precision and its inverse.
*>     RTULP, RTULPI   Square roots of the previous 4 values.
*>
*>             The following four arrays decode JTYPE:
*>     KTYPE(j)        The general type (1-10) for type "j".
*>     KMODE(j)        The MODE value to be passed to the matrix
*>                     generator for type "j".
*>     KMAGN(j)        The order of magnitude ( O(1),
*>                     O(overflow^(1/2) ), O(underflow^(1/2) )
*>     KCONDS(j)       Selectw whether CONDS is to be 1 or
*>                     1/sqrt(ulp).  (0 means irrelevant.)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
     $                   NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1,
     $                   VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1,
     $                   RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1,
     $                   RESULT, WORK, NWORK, IWORK, INFO )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
     $                   NSIZES, NTYPES, NWORK
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
      DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
     $                   RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
     $                   RCNDV1( * ), RCONDE( * ), RCONDV( * ),
     $                   RESULT( 11 ), SCALE( * ), SCALE1( * ),
     $                   VL( LDVL, * ), VR( LDVR, * ), WI( * ),
     $                   WI1( * ), WORK( * ), WR( * ), WR1( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
      INTEGER            MAXTYP
      PARAMETER          ( MAXTYP = 21 )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADNN
      CHARACTER          BALANC
      CHARACTER*3        PATH
      INTEGER            I, IBAL, IINFO, IMODE, ITYPE, IWK, J, JCOL,
     $                   JSIZE, JTYPE, MTYPES, N, NERRS, NFAIL, NMAX,
     $                   NNWORK, NTEST, NTESTF, NTESTT
      DOUBLE PRECISION   ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP,
     $                   ULPINV, UNFL
*     ..
*     .. Local Arrays ..
      CHARACTER          ADUMMA( 1 ), BAL( 4 )
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
     $                   KTYPE( MAXTYP )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGET23, DLASET, DLASUM, DLATME, DLATMR, DLATMS,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Data statements ..
      DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
      DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
     $                   3, 1, 2, 3 /
      DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
     $                   1, 5, 5, 5, 4, 3, 1 /
      DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
      DATA               BAL / 'N', 'P', 'S', 'B' /
*     ..
*     .. Executable Statements ..
*
      PATH( 1: 1 ) = 'Double precision'
      PATH( 2: 3 ) = 'VX'
*
*     Check for errors
*
      NTESTT = 0
      NTESTF = 0
      INFO = 0
*
*     Important constants
*
      BADNN = .FALSE.
*
*     12 is the largest dimension in the input file of precomputed
*     problems
*
      NMAX = 12
      DO 10 J = 1, NSIZES
         NMAX = MAX( NMAX, NN( J ) )
         IF( NN( J ).LT.0 )
     $      BADNN = .TRUE.
   10 CONTINUE
*
*     Check for errors
*
      IF( NSIZES.LT.0 ) THEN
         INFO = -1
      ELSE IF( BADNN ) THEN
         INFO = -2
      ELSE IF( NTYPES.LT.0 ) THEN
         INFO = -3
      ELSE IF( THRESH.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
         INFO = -10
      ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
         INFO = -17
      ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
         INFO = -19
      ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
         INFO = -21
      ELSE IF( 6*NMAX+2*NMAX**2.GT.NWORK ) THEN
         INFO = -32
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DDRVVX', -INFO )
         RETURN
      END IF
*
*     If nothing to do check on NIUNIT
*
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
     $   GO TO 160
*
*     More Important constants
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      ULP = DLAMCH( 'Precision' )
      ULPINV = ONE / ULP
      RTULP = SQRT( ULP )
      RTULPI = ONE / RTULP
*
*     Loop over sizes, types
*
      NERRS = 0
*
      DO 150 JSIZE = 1, NSIZES
         N = NN( JSIZE )
         IF( NSIZES.NE.1 ) THEN
            MTYPES = MIN( MAXTYP, NTYPES )
         ELSE
            MTYPES = MIN( MAXTYP+1, NTYPES )
         END IF
*
         DO 140 JTYPE = 1, MTYPES
            IF( .NOT.DOTYPE( JTYPE ) )
     $         GO TO 140
*
*           Save ISEED in case of an error.
*
            DO 20 J = 1, 4
               IOLDSD( J ) = ISEED( J )
   20       CONTINUE
*
*           Compute "A"
*
*           Control parameters:
*
*           KMAGN  KCONDS  KMODE        KTYPE
*       =1  O(1)   1       clustered 1  zero
*       =2  large  large   clustered 2  identity
*       =3  small          exponential  Jordan
*       =4                 arithmetic   diagonal, (w/ eigenvalues)
*       =5                 random log   symmetric, w/ eigenvalues
*       =6                 random       general, w/ eigenvalues
*       =7                              random diagonal
*       =8                              random symmetric
*       =9                              random general
*       =10                             random triangular
*
            IF( MTYPES.GT.MAXTYP )
     $         GO TO 90
*
            ITYPE = KTYPE( JTYPE )
            IMODE = KMODE( JTYPE )
*
*           Compute norm
*
            GO TO ( 30, 40, 50 )KMAGN( JTYPE )
*
   30       CONTINUE
            ANORM = ONE
            GO TO 60
*
   40       CONTINUE
            ANORM = OVFL*ULP
            GO TO 60
*
   50       CONTINUE
            ANORM = UNFL*ULPINV
            GO TO 60
*
   60       CONTINUE
*
            CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
            IINFO = 0
            COND = ULPINV
*
*           Special Matrices -- Identity & Jordan block
*
*              Zero
*
            IF( ITYPE.EQ.1 ) THEN
               IINFO = 0
*
            ELSE IF( ITYPE.EQ.2 ) THEN
*
*              Identity
*
               DO 70 JCOL = 1, N
                  A( JCOL, JCOL ) = ANORM
   70          CONTINUE
*
            ELSE IF( ITYPE.EQ.3 ) THEN
*
*              Jordan Block
*
               DO 80 JCOL = 1, N
                  A( JCOL, JCOL ) = ANORM
                  IF( JCOL.GT.1 )
     $               A( JCOL, JCOL-1 ) = ONE
   80          CONTINUE
*
            ELSE IF( ITYPE.EQ.4 ) THEN
*
*              Diagonal Matrix, [Eigen]values Specified
*
               CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
     $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
     $                      IINFO )
*
            ELSE IF( ITYPE.EQ.5 ) THEN
*
*              Symmetric, eigenvalues specified
*
               CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
     $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
     $                      IINFO )
*
            ELSE IF( ITYPE.EQ.6 ) THEN
*
*              General, eigenvalues specified
*
               IF( KCONDS( JTYPE ).EQ.1 ) THEN
                  CONDS = ONE
               ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
                  CONDS = RTULPI
               ELSE
                  CONDS = ZERO
               END IF
*
               ADUMMA( 1 ) = ' '
               CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
     $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
     $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
     $                      IINFO )
*
            ELSE IF( ITYPE.EQ.7 ) THEN
*
*              Diagonal, random eigenvalues
*
               CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.8 ) THEN
*
*              Symmetric, random eigenvalues
*
               CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.9 ) THEN
*
*              General, random eigenvalues
*
               CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
               IF( N.GE.4 ) THEN
                  CALL DLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
                  CALL DLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
     $                         LDA )
                  CALL DLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
     $                         LDA )
                  CALL DLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
     $                         LDA )
               END IF
*
            ELSE IF( ITYPE.EQ.10 ) THEN
*
*              Triangular, random eigenvalues
*
               CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE
*
               IINFO = 1
            END IF
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               RETURN
            END IF
*
   90       CONTINUE
*
*           Test for minimal and generous workspace
*
            DO 130 IWK = 1, 3
               IF( IWK.EQ.1 ) THEN
                  NNWORK = 3*N
               ELSE IF( IWK.EQ.2 ) THEN
                  NNWORK = 6*N + N**2
               ELSE
                  NNWORK = 6*N + 2*N**2
               END IF
               NNWORK = MAX( NNWORK, 1 )
*
*              Test for all balancing options
*
               DO 120 IBAL = 1, 4
                  BALANC = BAL( IBAL )
*
*                 Perform tests
*
                  CALL DGET23( .FALSE., BALANC, JTYPE, THRESH, IOLDSD,
     $                         NOUNIT, N, A, LDA, H, WR, WI, WR1, WI1,
     $                         VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV,
     $                         RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN,
     $                         SCALE, SCALE1, RESULT, WORK, NNWORK,
     $                         IWORK, INFO )
*
*                 Check for RESULT(j) > THRESH
*
                  NTEST = 0
                  NFAIL = 0
                  DO 100 J = 1, 9
                     IF( RESULT( J ).GE.ZERO )
     $                  NTEST = NTEST + 1
                     IF( RESULT( J ).GE.THRESH )
     $                  NFAIL = NFAIL + 1
  100             CONTINUE
*
                  IF( NFAIL.GT.0 )
     $               NTESTF = NTESTF + 1
                  IF( NTESTF.EQ.1 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )PATH
                     WRITE( NOUNIT, FMT = 9998 )
                     WRITE( NOUNIT, FMT = 9997 )
                     WRITE( NOUNIT, FMT = 9996 )
                     WRITE( NOUNIT, FMT = 9995 )THRESH
                     NTESTF = 2
                  END IF
*
                  DO 110 J = 1, 9
                     IF( RESULT( J ).GE.THRESH ) THEN
                        WRITE( NOUNIT, FMT = 9994 )BALANC, N, IWK,
     $                     IOLDSD, JTYPE, J, RESULT( J )
                     END IF
  110             CONTINUE
*
                  NERRS = NERRS + NFAIL
                  NTESTT = NTESTT + NTEST
*
  120          CONTINUE
  130       CONTINUE
  140    CONTINUE
  150 CONTINUE
*
  160 CONTINUE
*
*     Read in data from file to check accuracy of condition estimation.
*     Assume input eigenvalues are sorted lexicographically (increasing
*     by real part, then decreasing by imaginary part)
*
      JTYPE = 0
  170 CONTINUE
      READ( NIUNIT, FMT = *, END = 220 )N
*
*     Read input data until N=0
*
      IF( N.EQ.0 )
     $   GO TO 220
      JTYPE = JTYPE + 1
      ISEED( 1 ) = JTYPE
      DO 180 I = 1, N
         READ( NIUNIT, FMT = * )( A( I, J ), J = 1, N )
  180 CONTINUE
      DO 190 I = 1, N
         READ( NIUNIT, FMT = * )WR1( I ), WI1( I ), RCDEIN( I ),
     $      RCDVIN( I )
  190 CONTINUE
      CALL DGET23( .TRUE., 'N', 22, THRESH, ISEED, NOUNIT, N, A, LDA, H,
     $             WR, WI, WR1, WI1, VL, LDVL, VR, LDVR, LRE, LDLRE,
     $             RCONDV, RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN,
     $             SCALE, SCALE1, RESULT, WORK, 6*N+2*N**2, IWORK,
     $             INFO )
*
*     Check for RESULT(j) > THRESH
*
      NTEST = 0
      NFAIL = 0
      DO 200 J = 1, 11
         IF( RESULT( J ).GE.ZERO )
     $      NTEST = NTEST + 1
         IF( RESULT( J ).GE.THRESH )
     $      NFAIL = NFAIL + 1
  200 CONTINUE
*
      IF( NFAIL.GT.0 )
     $   NTESTF = NTESTF + 1
      IF( NTESTF.EQ.1 ) THEN
         WRITE( NOUNIT, FMT = 9999 )PATH
         WRITE( NOUNIT, FMT = 9998 )
         WRITE( NOUNIT, FMT = 9997 )
         WRITE( NOUNIT, FMT = 9996 )
         WRITE( NOUNIT, FMT = 9995 )THRESH
         NTESTF = 2
      END IF
*
      DO 210 J = 1, 11
         IF( RESULT( J ).GE.THRESH ) THEN
            WRITE( NOUNIT, FMT = 9993 )N, JTYPE, J, RESULT( J )
         END IF
  210 CONTINUE
*
      NERRS = NERRS + NFAIL
      NTESTT = NTESTT + NTEST
      GO TO 170
  220 CONTINUE
*
*     Summary
*
      CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
*
 9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition',
     $      ' Expert Driver', /
     $      ' Matrix types (see DDRVVX for details): ' )
*
 9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
     $      '           ', '  5=Diagonal: geometr. spaced entries.',
     $      / '  2=Identity matrix.                    ', '  6=Diagona',
     $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
     $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
     $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
     $      'mall, evenly spaced.' )
 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
     $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
     $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
     $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
     $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
     $      'lex ', / ' 12=Well-cond., random complex ', '         ',
     $      ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
     $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
     $      ' complx ' )
 9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
     $      'with small random entries.', / ' 20=Matrix with large ran',
     $      'dom entries.   ', ' 22=Matrix read from input file', / )
 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
     $      / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
     $      / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
     $      / ' 3 = | |VR(i)| - 1 | / ulp ',
     $      / ' 4 = | |VL(i)| - 1 | / ulp ',
     $      / ' 5 = 0 if W same no matter if VR or VL computed,',
     $      ' 1/ulp otherwise', /
     $      ' 6 = 0 if VR same no matter what else computed,',
     $      '  1/ulp otherwise', /
     $      ' 7 = 0 if VL same no matter what else computed,',
     $      '  1/ulp otherwise', /
     $      ' 8 = 0 if RCONDV same no matter what else computed,',
     $      '  1/ulp otherwise', /
     $      ' 9 = 0 if SCALE, ILO, IHI, ABNRM same no matter what else',
     $      ' computed,  1/ulp otherwise',
     $      / ' 10 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),',
     $      / ' 11 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),' )
 9994 FORMAT( ' BALANC=''', A1, ''',N=', I4, ',IWK=', I1, ', seed=',
     $      4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
 9993 FORMAT( ' N=', I5, ', input example =', I3, ',  test(', I2, ')=',
     $      G10.3 )
 9992 FORMAT( ' DDRVVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
      RETURN
*
*     End of DDRVVX
*
      END