numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/dget24.f | 32451B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
*> \brief \b DGET24 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DGET24( COMP, JTYPE, THRESH, ISEED, NOUNIT, N, A, LDA, * H, HT, WR, WI, WRT, WIT, WRTMP, WITMP, VS, * LDVS, VS1, RCDEIN, RCDVIN, NSLCT, ISLCT, * RESULT, WORK, LWORK, IWORK, BWORK, INFO ) * * .. Scalar Arguments .. * LOGICAL COMP * INTEGER INFO, JTYPE, LDA, LDVS, LWORK, N, NOUNIT, NSLCT * DOUBLE PRECISION RCDEIN, RCDVIN, THRESH * .. * .. Array Arguments .. * LOGICAL BWORK( * ) * INTEGER ISEED( 4 ), ISLCT( * ), IWORK( * ) * DOUBLE PRECISION A( LDA, * ), H( LDA, * ), HT( LDA, * ), * $ RESULT( 17 ), VS( LDVS, * ), VS1( LDVS, * ), * $ WI( * ), WIT( * ), WITMP( * ), WORK( * ), * $ WR( * ), WRT( * ), WRTMP( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DGET24 checks the nonsymmetric eigenvalue (Schur form) problem *> expert driver DGEESX. *> *> If COMP = .FALSE., the first 13 of the following tests will be *> be performed on the input matrix A, and also tests 14 and 15 *> if LWORK is sufficiently large. *> If COMP = .TRUE., all 17 test will be performed. *> *> (1) 0 if T is in Schur form, 1/ulp otherwise *> (no sorting of eigenvalues) *> *> (2) | A - VS T VS' | / ( n |A| ulp ) *> *> Here VS is the matrix of Schur eigenvectors, and T is in Schur *> form (no sorting of eigenvalues). *> *> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). *> *> (4) 0 if WR+sqrt(-1)*WI are eigenvalues of T *> 1/ulp otherwise *> (no sorting of eigenvalues) *> *> (5) 0 if T(with VS) = T(without VS), *> 1/ulp otherwise *> (no sorting of eigenvalues) *> *> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), *> 1/ulp otherwise *> (no sorting of eigenvalues) *> *> (7) 0 if T is in Schur form, 1/ulp otherwise *> (with sorting of eigenvalues) *> *> (8) | A - VS T VS' | / ( n |A| ulp ) *> *> Here VS is the matrix of Schur eigenvectors, and T is in Schur *> form (with sorting of eigenvalues). *> *> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). *> *> (10) 0 if WR+sqrt(-1)*WI are eigenvalues of T *> 1/ulp otherwise *> If workspace sufficient, also compare WR, WI with and *> without reciprocal condition numbers *> (with sorting of eigenvalues) *> *> (11) 0 if T(with VS) = T(without VS), *> 1/ulp otherwise *> If workspace sufficient, also compare T with and without *> reciprocal condition numbers *> (with sorting of eigenvalues) *> *> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), *> 1/ulp otherwise *> If workspace sufficient, also compare VS with and without *> reciprocal condition numbers *> (with sorting of eigenvalues) *> *> (13) if sorting worked and SDIM is the number of *> eigenvalues which were SELECTed *> If workspace sufficient, also compare SDIM with and *> without reciprocal condition numbers *> *> (14) if RCONDE the same no matter if VS and/or RCONDV computed *> *> (15) if RCONDV the same no matter if VS and/or RCONDE computed *> *> (16) |RCONDE - RCDEIN| / cond(RCONDE) *> *> RCONDE is the reciprocal average eigenvalue condition number *> computed by DGEESX and RCDEIN (the precomputed true value) *> is supplied as input. cond(RCONDE) is the condition number *> of RCONDE, and takes errors in computing RCONDE into account, *> so that the resulting quantity should be O(ULP). cond(RCONDE) *> is essentially given by norm(A)/RCONDV. *> *> (17) |RCONDV - RCDVIN| / cond(RCONDV) *> *> RCONDV is the reciprocal right invariant subspace condition *> number computed by DGEESX and RCDVIN (the precomputed true *> value) is supplied as input. cond(RCONDV) is the condition *> number of RCONDV, and takes errors in computing RCONDV into *> account, so that the resulting quantity should be O(ULP). *> cond(RCONDV) is essentially given by norm(A)/RCONDE. *> \endverbatim * * Arguments: * ========== * *> \param[in] COMP *> \verbatim *> COMP is LOGICAL *> COMP describes which input tests to perform: *> = .FALSE. if the computed condition numbers are not to *> be tested against RCDVIN and RCDEIN *> = .TRUE. if they are to be compared *> \endverbatim *> *> \param[in] JTYPE *> \verbatim *> JTYPE is INTEGER *> Type of input matrix. Used to label output if error occurs. *> \endverbatim *> *> \param[in] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> If COMP = .FALSE., the random number generator seed *> used to produce matrix. *> If COMP = .TRUE., ISEED(1) = the number of the example. *> Used to label output if error occurs. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] NOUNIT *> \verbatim *> NOUNIT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns INFO not equal to 0.) *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The dimension of A. N must be at least 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA, N) *> Used to hold the matrix whose eigenvalues are to be *> computed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A, and H. LDA must be at *> least 1 and at least N. *> \endverbatim *> *> \param[out] H *> \verbatim *> H is DOUBLE PRECISION array, dimension (LDA, N) *> Another copy of the test matrix A, modified by DGEESX. *> \endverbatim *> *> \param[out] HT *> \verbatim *> HT is DOUBLE PRECISION array, dimension (LDA, N) *> Yet another copy of the test matrix A, modified by DGEESX. *> \endverbatim *> *> \param[out] WR *> \verbatim *> WR is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] WI *> \verbatim *> WI is DOUBLE PRECISION array, dimension (N) *> *> The real and imaginary parts of the eigenvalues of A. *> On exit, WR + WI*i are the eigenvalues of the matrix in A. *> \endverbatim *> *> \param[out] WRT *> \verbatim *> WRT is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] WIT *> \verbatim *> WIT is DOUBLE PRECISION array, dimension (N) *> *> Like WR, WI, these arrays contain the eigenvalues of A, *> but those computed when DGEESX only computes a partial *> eigendecomposition, i.e. not Schur vectors *> \endverbatim *> *> \param[out] WRTMP *> \verbatim *> WRTMP is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] WITMP *> \verbatim *> WITMP is DOUBLE PRECISION array, dimension (N) *> *> Like WR, WI, these arrays contain the eigenvalues of A, *> but sorted by increasing real part. *> \endverbatim *> *> \param[out] VS *> \verbatim *> VS is DOUBLE PRECISION array, dimension (LDVS, N) *> VS holds the computed Schur vectors. *> \endverbatim *> *> \param[in] LDVS *> \verbatim *> LDVS is INTEGER *> Leading dimension of VS. Must be at least max(1, N). *> \endverbatim *> *> \param[out] VS1 *> \verbatim *> VS1 is DOUBLE PRECISION array, dimension (LDVS, N) *> VS1 holds another copy of the computed Schur vectors. *> \endverbatim *> *> \param[in] RCDEIN *> \verbatim *> RCDEIN is DOUBLE PRECISION *> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal *> condition number for the average of selected eigenvalues. *> \endverbatim *> *> \param[in] RCDVIN *> \verbatim *> RCDVIN is DOUBLE PRECISION *> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal *> condition number for the selected right invariant subspace. *> \endverbatim *> *> \param[in] NSLCT *> \verbatim *> NSLCT is INTEGER *> When COMP = .TRUE. the number of selected eigenvalues *> corresponding to the precomputed values RCDEIN and RCDVIN. *> \endverbatim *> *> \param[in] ISLCT *> \verbatim *> ISLCT is INTEGER array, dimension (NSLCT) *> When COMP = .TRUE. ISLCT selects the eigenvalues of the *> input matrix corresponding to the precomputed values RCDEIN *> and RCDVIN. For I=1, ... ,NSLCT, if ISLCT(I) = J, then the *> eigenvalue with the J-th largest real part is selected. *> Not referenced if COMP = .FALSE. *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (17) *> The values computed by the 17 tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The number of entries in WORK to be passed to DGEESX. This *> must be at least 3*N, and N+N**2 if tests 14--16 are to *> be performed. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N*N) *> \endverbatim *> *> \param[out] BWORK *> \verbatim *> BWORK is LOGICAL array, dimension (N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> If 0, successful exit. *> If <0, input parameter -INFO had an incorrect value. *> If >0, DGEESX returned an error code, the absolute *> value of which is returned. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DGET24( COMP, JTYPE, THRESH, ISEED, NOUNIT, N, A, LDA, $ H, HT, WR, WI, WRT, WIT, WRTMP, WITMP, VS, $ LDVS, VS1, RCDEIN, RCDVIN, NSLCT, ISLCT, $ RESULT, WORK, LWORK, IWORK, BWORK, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL COMP INTEGER INFO, JTYPE, LDA, LDVS, LWORK, N, NOUNIT, NSLCT DOUBLE PRECISION RCDEIN, RCDVIN, THRESH * .. * .. Array Arguments .. LOGICAL BWORK( * ) INTEGER ISEED( 4 ), ISLCT( * ), IWORK( * ) DOUBLE PRECISION A( LDA, * ), H( LDA, * ), HT( LDA, * ), $ RESULT( 17 ), VS( LDVS, * ), VS1( LDVS, * ), $ WI( * ), WIT( * ), WITMP( * ), WORK( * ), $ WR( * ), WRT( * ), WRTMP( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) DOUBLE PRECISION EPSIN PARAMETER ( EPSIN = 5.9605D-8 ) * .. * .. Local Scalars .. CHARACTER SORT INTEGER I, IINFO, ISORT, ITMP, J, KMIN, KNTEIG, LIWORK, $ RSUB, SDIM, SDIM1 DOUBLE PRECISION ANORM, EPS, RCNDE1, RCNDV1, RCONDE, RCONDV, $ SMLNUM, TMP, TOL, TOLIN, ULP, ULPINV, V, VIMIN, $ VRMIN, WNORM * .. * .. Local Arrays .. INTEGER IPNT( 20 ) * .. * .. Arrays in Common .. LOGICAL SELVAL( 20 ) DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) * .. * .. Scalars in Common .. INTEGER SELDIM, SELOPT * .. * .. Common blocks .. COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI * .. * .. External Functions .. LOGICAL DSLECT DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL DSLECT, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEESX, DGEMM, DLACPY, DORT01, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN, SIGN, SQRT * .. * .. Executable Statements .. * * Check for errors * INFO = 0 IF( THRESH.LT.ZERO ) THEN INFO = -3 ELSE IF( NOUNIT.LE.0 ) THEN INFO = -5 ELSE IF( N.LT.0 ) THEN INFO = -6 ELSE IF( LDA.LT.1 .OR. LDA.LT.N ) THEN INFO = -8 ELSE IF( LDVS.LT.1 .OR. LDVS.LT.N ) THEN INFO = -18 ELSE IF( LWORK.LT.3*N ) THEN INFO = -26 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGET24', -INFO ) RETURN END IF * * Quick return if nothing to do * DO 10 I = 1, 17 RESULT( I ) = -ONE 10 CONTINUE * IF( N.EQ.0 ) $ RETURN * * Important constants * SMLNUM = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Precision' ) ULPINV = ONE / ULP * * Perform tests (1)-(13) * SELOPT = 0 LIWORK = N*N DO 120 ISORT = 0, 1 IF( ISORT.EQ.0 ) THEN SORT = 'N' RSUB = 0 ELSE SORT = 'S' RSUB = 6 END IF * * Compute Schur form and Schur vectors, and test them * CALL DLACPY( 'F', N, N, A, LDA, H, LDA ) CALL DGEESX( 'V', SORT, DSLECT, 'N', N, H, LDA, SDIM, WR, WI, $ VS, LDVS, RCONDE, RCONDV, WORK, LWORK, IWORK, $ LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 1+RSUB ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'DGEESX1', IINFO, N, JTYPE, $ ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'DGEESX1', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) RETURN END IF IF( ISORT.EQ.0 ) THEN CALL DCOPY( N, WR, 1, WRTMP, 1 ) CALL DCOPY( N, WI, 1, WITMP, 1 ) END IF * * Do Test (1) or Test (7) * RESULT( 1+RSUB ) = ZERO DO 30 J = 1, N - 2 DO 20 I = J + 2, N IF( H( I, J ).NE.ZERO ) $ RESULT( 1+RSUB ) = ULPINV 20 CONTINUE 30 CONTINUE DO 40 I = 1, N - 2 IF( H( I+1, I ).NE.ZERO .AND. H( I+2, I+1 ).NE.ZERO ) $ RESULT( 1+RSUB ) = ULPINV 40 CONTINUE DO 50 I = 1, N - 1 IF( H( I+1, I ).NE.ZERO ) THEN IF( H( I, I ).NE.H( I+1, I+1 ) .OR. H( I, I+1 ).EQ. $ ZERO .OR. SIGN( ONE, H( I+1, I ) ).EQ. $ SIGN( ONE, H( I, I+1 ) ) )RESULT( 1+RSUB ) = ULPINV END IF 50 CONTINUE * * Test (2) or (8): Compute norm(A - Q*H*Q') / (norm(A) * N * ULP) * * Copy A to VS1, used as workspace * CALL DLACPY( ' ', N, N, A, LDA, VS1, LDVS ) * * Compute Q*H and store in HT. * CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE, VS, $ LDVS, H, LDA, ZERO, HT, LDA ) * * Compute A - Q*H*Q' * CALL DGEMM( 'No transpose', 'Transpose', N, N, N, -ONE, HT, $ LDA, VS, LDVS, ONE, VS1, LDVS ) * ANORM = MAX( DLANGE( '1', N, N, A, LDA, WORK ), SMLNUM ) WNORM = DLANGE( '1', N, N, VS1, LDVS, WORK ) * IF( ANORM.GT.WNORM ) THEN RESULT( 2+RSUB ) = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 2+RSUB ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / $ ( N*ULP ) ELSE RESULT( 2+RSUB ) = MIN( WNORM / ANORM, DBLE( N ) ) / $ ( N*ULP ) END IF END IF * * Test (3) or (9): Compute norm( I - Q'*Q ) / ( N * ULP ) * CALL DORT01( 'Columns', N, N, VS, LDVS, WORK, LWORK, $ RESULT( 3+RSUB ) ) * * Do Test (4) or Test (10) * RESULT( 4+RSUB ) = ZERO DO 60 I = 1, N IF( H( I, I ).NE.WR( I ) ) $ RESULT( 4+RSUB ) = ULPINV 60 CONTINUE IF( N.GT.1 ) THEN IF( H( 2, 1 ).EQ.ZERO .AND. WI( 1 ).NE.ZERO ) $ RESULT( 4+RSUB ) = ULPINV IF( H( N, N-1 ).EQ.ZERO .AND. WI( N ).NE.ZERO ) $ RESULT( 4+RSUB ) = ULPINV END IF DO 70 I = 1, N - 1 IF( H( I+1, I ).NE.ZERO ) THEN TMP = SQRT( ABS( H( I+1, I ) ) )* $ SQRT( ABS( H( I, I+1 ) ) ) RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ), $ ABS( WI( I )-TMP ) / $ MAX( ULP*TMP, SMLNUM ) ) RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ), $ ABS( WI( I+1 )+TMP ) / $ MAX( ULP*TMP, SMLNUM ) ) ELSE IF( I.GT.1 ) THEN IF( H( I+1, I ).EQ.ZERO .AND. H( I, I-1 ).EQ.ZERO .AND. $ WI( I ).NE.ZERO )RESULT( 4+RSUB ) = ULPINV END IF 70 CONTINUE * * Do Test (5) or Test (11) * CALL DLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL DGEESX( 'N', SORT, DSLECT, 'N', N, HT, LDA, SDIM, WRT, $ WIT, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, IWORK, $ LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 5+RSUB ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'DGEESX2', IINFO, N, JTYPE, $ ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'DGEESX2', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 250 END IF * RESULT( 5+RSUB ) = ZERO DO 90 J = 1, N DO 80 I = 1, N IF( H( I, J ).NE.HT( I, J ) ) $ RESULT( 5+RSUB ) = ULPINV 80 CONTINUE 90 CONTINUE * * Do Test (6) or Test (12) * RESULT( 6+RSUB ) = ZERO DO 100 I = 1, N IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) ) $ RESULT( 6+RSUB ) = ULPINV 100 CONTINUE * * Do Test (13) * IF( ISORT.EQ.1 ) THEN RESULT( 13 ) = ZERO KNTEIG = 0 DO 110 I = 1, N IF( DSLECT( WR( I ), WI( I ) ) .OR. $ DSLECT( WR( I ), -WI( I ) ) )KNTEIG = KNTEIG + 1 IF( I.LT.N ) THEN IF( ( DSLECT( WR( I+1 ), WI( I+1 ) ) .OR. $ DSLECT( WR( I+1 ), -WI( I+1 ) ) ) .AND. $ ( .NOT.( DSLECT( WR( I ), $ WI( I ) ) .OR. DSLECT( WR( I ), $ -WI( I ) ) ) ) .AND. IINFO.NE.N+2 )RESULT( 13 ) $ = ULPINV END IF 110 CONTINUE IF( SDIM.NE.KNTEIG ) $ RESULT( 13 ) = ULPINV END IF * 120 CONTINUE * * If there is enough workspace, perform tests (14) and (15) * as well as (10) through (13) * IF( LWORK.GE.N+( N*N ) / 2 ) THEN * * Compute both RCONDE and RCONDV with VS * SORT = 'S' RESULT( 14 ) = ZERO RESULT( 15 ) = ZERO CALL DLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL DGEESX( 'V', SORT, DSLECT, 'B', N, HT, LDA, SDIM1, WRT, $ WIT, VS1, LDVS, RCONDE, RCONDV, WORK, LWORK, $ IWORK, LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 14 ) = ULPINV RESULT( 15 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'DGEESX3', IINFO, N, JTYPE, $ ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'DGEESX3', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 250 END IF * * Perform tests (10), (11), (12), and (13) * DO 140 I = 1, N IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) ) $ RESULT( 10 ) = ULPINV DO 130 J = 1, N IF( H( I, J ).NE.HT( I, J ) ) $ RESULT( 11 ) = ULPINV IF( VS( I, J ).NE.VS1( I, J ) ) $ RESULT( 12 ) = ULPINV 130 CONTINUE 140 CONTINUE IF( SDIM.NE.SDIM1 ) $ RESULT( 13 ) = ULPINV * * Compute both RCONDE and RCONDV without VS, and compare * CALL DLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL DGEESX( 'N', SORT, DSLECT, 'B', N, HT, LDA, SDIM1, WRT, $ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK, $ IWORK, LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 14 ) = ULPINV RESULT( 15 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'DGEESX4', IINFO, N, JTYPE, $ ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'DGEESX4', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 250 END IF * * Perform tests (14) and (15) * IF( RCNDE1.NE.RCONDE ) $ RESULT( 14 ) = ULPINV IF( RCNDV1.NE.RCONDV ) $ RESULT( 15 ) = ULPINV * * Perform tests (10), (11), (12), and (13) * DO 160 I = 1, N IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) ) $ RESULT( 10 ) = ULPINV DO 150 J = 1, N IF( H( I, J ).NE.HT( I, J ) ) $ RESULT( 11 ) = ULPINV IF( VS( I, J ).NE.VS1( I, J ) ) $ RESULT( 12 ) = ULPINV 150 CONTINUE 160 CONTINUE IF( SDIM.NE.SDIM1 ) $ RESULT( 13 ) = ULPINV * * Compute RCONDE with VS, and compare * CALL DLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL DGEESX( 'V', SORT, DSLECT, 'E', N, HT, LDA, SDIM1, WRT, $ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK, $ IWORK, LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 14 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'DGEESX5', IINFO, N, JTYPE, $ ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'DGEESX5', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 250 END IF * * Perform test (14) * IF( RCNDE1.NE.RCONDE ) $ RESULT( 14 ) = ULPINV * * Perform tests (10), (11), (12), and (13) * DO 180 I = 1, N IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) ) $ RESULT( 10 ) = ULPINV DO 170 J = 1, N IF( H( I, J ).NE.HT( I, J ) ) $ RESULT( 11 ) = ULPINV IF( VS( I, J ).NE.VS1( I, J ) ) $ RESULT( 12 ) = ULPINV 170 CONTINUE 180 CONTINUE IF( SDIM.NE.SDIM1 ) $ RESULT( 13 ) = ULPINV * * Compute RCONDE without VS, and compare * CALL DLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL DGEESX( 'N', SORT, DSLECT, 'E', N, HT, LDA, SDIM1, WRT, $ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK, $ IWORK, LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 14 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'DGEESX6', IINFO, N, JTYPE, $ ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'DGEESX6', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 250 END IF * * Perform test (14) * IF( RCNDE1.NE.RCONDE ) $ RESULT( 14 ) = ULPINV * * Perform tests (10), (11), (12), and (13) * DO 200 I = 1, N IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) ) $ RESULT( 10 ) = ULPINV DO 190 J = 1, N IF( H( I, J ).NE.HT( I, J ) ) $ RESULT( 11 ) = ULPINV IF( VS( I, J ).NE.VS1( I, J ) ) $ RESULT( 12 ) = ULPINV 190 CONTINUE 200 CONTINUE IF( SDIM.NE.SDIM1 ) $ RESULT( 13 ) = ULPINV * * Compute RCONDV with VS, and compare * CALL DLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL DGEESX( 'V', SORT, DSLECT, 'V', N, HT, LDA, SDIM1, WRT, $ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK, $ IWORK, LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 15 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'DGEESX7', IINFO, N, JTYPE, $ ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'DGEESX7', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 250 END IF * * Perform test (15) * IF( RCNDV1.NE.RCONDV ) $ RESULT( 15 ) = ULPINV * * Perform tests (10), (11), (12), and (13) * DO 220 I = 1, N IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) ) $ RESULT( 10 ) = ULPINV DO 210 J = 1, N IF( H( I, J ).NE.HT( I, J ) ) $ RESULT( 11 ) = ULPINV IF( VS( I, J ).NE.VS1( I, J ) ) $ RESULT( 12 ) = ULPINV 210 CONTINUE 220 CONTINUE IF( SDIM.NE.SDIM1 ) $ RESULT( 13 ) = ULPINV * * Compute RCONDV without VS, and compare * CALL DLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL DGEESX( 'N', SORT, DSLECT, 'V', N, HT, LDA, SDIM1, WRT, $ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK, $ IWORK, LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 15 ) = ULPINV IF( JTYPE.NE.22 ) THEN WRITE( NOUNIT, FMT = 9998 )'DGEESX8', IINFO, N, JTYPE, $ ISEED ELSE WRITE( NOUNIT, FMT = 9999 )'DGEESX8', IINFO, N, $ ISEED( 1 ) END IF INFO = ABS( IINFO ) GO TO 250 END IF * * Perform test (15) * IF( RCNDV1.NE.RCONDV ) $ RESULT( 15 ) = ULPINV * * Perform tests (10), (11), (12), and (13) * DO 240 I = 1, N IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) ) $ RESULT( 10 ) = ULPINV DO 230 J = 1, N IF( H( I, J ).NE.HT( I, J ) ) $ RESULT( 11 ) = ULPINV IF( VS( I, J ).NE.VS1( I, J ) ) $ RESULT( 12 ) = ULPINV 230 CONTINUE 240 CONTINUE IF( SDIM.NE.SDIM1 ) $ RESULT( 13 ) = ULPINV * END IF * 250 CONTINUE * * If there are precomputed reciprocal condition numbers, compare * computed values with them. * IF( COMP ) THEN * * First set up SELOPT, SELDIM, SELVAL, SELWR, and SELWI so that * the logical function DSLECT selects the eigenvalues specified * by NSLCT and ISLCT. * SELDIM = N SELOPT = 1 EPS = MAX( ULP, EPSIN ) DO 260 I = 1, N IPNT( I ) = I SELVAL( I ) = .FALSE. SELWR( I ) = WRTMP( I ) SELWI( I ) = WITMP( I ) 260 CONTINUE DO 280 I = 1, N - 1 KMIN = I VRMIN = WRTMP( I ) VIMIN = WITMP( I ) DO 270 J = I + 1, N IF( WRTMP( J ).LT.VRMIN ) THEN KMIN = J VRMIN = WRTMP( J ) VIMIN = WITMP( J ) END IF 270 CONTINUE WRTMP( KMIN ) = WRTMP( I ) WITMP( KMIN ) = WITMP( I ) WRTMP( I ) = VRMIN WITMP( I ) = VIMIN ITMP = IPNT( I ) IPNT( I ) = IPNT( KMIN ) IPNT( KMIN ) = ITMP 280 CONTINUE DO 290 I = 1, NSLCT SELVAL( IPNT( ISLCT( I ) ) ) = .TRUE. 290 CONTINUE * * Compute condition numbers * CALL DLACPY( 'F', N, N, A, LDA, HT, LDA ) CALL DGEESX( 'N', 'S', DSLECT, 'B', N, HT, LDA, SDIM1, WRT, $ WIT, VS1, LDVS, RCONDE, RCONDV, WORK, LWORK, $ IWORK, LIWORK, BWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN RESULT( 16 ) = ULPINV RESULT( 17 ) = ULPINV WRITE( NOUNIT, FMT = 9999 )'DGEESX9', IINFO, N, ISEED( 1 ) INFO = ABS( IINFO ) GO TO 300 END IF * * Compare condition number for average of selected eigenvalues * taking its condition number into account * ANORM = DLANGE( '1', N, N, A, LDA, WORK ) V = MAX( DBLE( N )*EPS*ANORM, SMLNUM ) IF( ANORM.EQ.ZERO ) $ V = ONE IF( V.GT.RCONDV ) THEN TOL = ONE ELSE TOL = V / RCONDV END IF IF( V.GT.RCDVIN ) THEN TOLIN = ONE ELSE TOLIN = V / RCDVIN END IF TOL = MAX( TOL, SMLNUM / EPS ) TOLIN = MAX( TOLIN, SMLNUM / EPS ) IF( EPS*( RCDEIN-TOLIN ).GT.RCONDE+TOL ) THEN RESULT( 16 ) = ULPINV ELSE IF( RCDEIN-TOLIN.GT.RCONDE+TOL ) THEN RESULT( 16 ) = ( RCDEIN-TOLIN ) / ( RCONDE+TOL ) ELSE IF( RCDEIN+TOLIN.LT.EPS*( RCONDE-TOL ) ) THEN RESULT( 16 ) = ULPINV ELSE IF( RCDEIN+TOLIN.LT.RCONDE-TOL ) THEN RESULT( 16 ) = ( RCONDE-TOL ) / ( RCDEIN+TOLIN ) ELSE RESULT( 16 ) = ONE END IF * * Compare condition numbers for right invariant subspace * taking its condition number into account * IF( V.GT.RCONDV*RCONDE ) THEN TOL = RCONDV ELSE TOL = V / RCONDE END IF IF( V.GT.RCDVIN*RCDEIN ) THEN TOLIN = RCDVIN ELSE TOLIN = V / RCDEIN END IF TOL = MAX( TOL, SMLNUM / EPS ) TOLIN = MAX( TOLIN, SMLNUM / EPS ) IF( EPS*( RCDVIN-TOLIN ).GT.RCONDV+TOL ) THEN RESULT( 17 ) = ULPINV ELSE IF( RCDVIN-TOLIN.GT.RCONDV+TOL ) THEN RESULT( 17 ) = ( RCDVIN-TOLIN ) / ( RCONDV+TOL ) ELSE IF( RCDVIN+TOLIN.LT.EPS*( RCONDV-TOL ) ) THEN RESULT( 17 ) = ULPINV ELSE IF( RCDVIN+TOLIN.LT.RCONDV-TOL ) THEN RESULT( 17 ) = ( RCONDV-TOL ) / ( RCDVIN+TOLIN ) ELSE RESULT( 17 ) = ONE END IF * 300 CONTINUE * END IF * 9999 FORMAT( ' DGET24: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', INPUT EXAMPLE NUMBER = ', I4 ) 9998 FORMAT( ' DGET24: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * RETURN * * End of DGET24 * END