numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/dget33.f | 7294B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
*> \brief \b DGET33 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DGET33( RMAX, LMAX, NINFO, KNT ) * * .. Scalar Arguments .. * INTEGER KNT, LMAX, NINFO * DOUBLE PRECISION RMAX * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DGET33 tests DLANV2, a routine for putting 2 by 2 blocks into *> standard form. In other words, it computes a two by two rotation *> [[C,S];[-S,C]] where in *> *> [ C S ][T(1,1) T(1,2)][ C -S ] = [ T11 T12 ] *> [-S C ][T(2,1) T(2,2)][ S C ] [ T21 T22 ] *> *> either *> 1) T21=0 (real eigenvalues), or *> 2) T11=T22 and T21*T12<0 (complex conjugate eigenvalues). *> We also verify that the residual is small. *> \endverbatim * * Arguments: * ========== * *> \param[out] RMAX *> \verbatim *> RMAX is DOUBLE PRECISION *> Value of the largest test ratio. *> \endverbatim *> *> \param[out] LMAX *> \verbatim *> LMAX is INTEGER *> Example number where largest test ratio achieved. *> \endverbatim *> *> \param[out] NINFO *> \verbatim *> NINFO is INTEGER *> Number of examples returned with INFO .NE. 0. *> \endverbatim *> *> \param[out] KNT *> \verbatim *> KNT is INTEGER *> Total number of examples tested. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DGET33( RMAX, LMAX, NINFO, KNT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER KNT, LMAX, NINFO DOUBLE PRECISION RMAX * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) DOUBLE PRECISION TWO, FOUR PARAMETER ( TWO = 2.0D0, FOUR = 4.0D0 ) * .. * .. Local Scalars .. INTEGER I1, I2, I3, I4, IM1, IM2, IM3, IM4, J1, J2, J3 DOUBLE PRECISION BIGNUM, CS, EPS, RES, SMLNUM, SN, SUM, TNRM, $ WI1, WI2, WR1, WR2 * .. * .. Local Arrays .. DOUBLE PRECISION Q( 2, 2 ), T( 2, 2 ), T1( 2, 2 ), T2( 2, 2 ), $ VAL( 4 ), VM( 3 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL DLANV2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SIGN * .. * .. Executable Statements .. * * Get machine parameters * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) / EPS BIGNUM = ONE / SMLNUM * * Set up test case parameters * VAL( 1 ) = ONE VAL( 2 ) = ONE + TWO*EPS VAL( 3 ) = TWO VAL( 4 ) = TWO - FOUR*EPS VM( 1 ) = SMLNUM VM( 2 ) = ONE VM( 3 ) = BIGNUM * KNT = 0 NINFO = 0 LMAX = 0 RMAX = ZERO * * Begin test loop * DO 150 I1 = 1, 4 DO 140 I2 = 1, 4 DO 130 I3 = 1, 4 DO 120 I4 = 1, 4 DO 110 IM1 = 1, 3 DO 100 IM2 = 1, 3 DO 90 IM3 = 1, 3 DO 80 IM4 = 1, 3 T( 1, 1 ) = VAL( I1 )*VM( IM1 ) T( 1, 2 ) = VAL( I2 )*VM( IM2 ) T( 2, 1 ) = -VAL( I3 )*VM( IM3 ) T( 2, 2 ) = VAL( I4 )*VM( IM4 ) TNRM = MAX( ABS( T( 1, 1 ) ), $ ABS( T( 1, 2 ) ), ABS( T( 2, 1 ) ), $ ABS( T( 2, 2 ) ) ) T1( 1, 1 ) = T( 1, 1 ) T1( 1, 2 ) = T( 1, 2 ) T1( 2, 1 ) = T( 2, 1 ) T1( 2, 2 ) = T( 2, 2 ) Q( 1, 1 ) = ONE Q( 1, 2 ) = ZERO Q( 2, 1 ) = ZERO Q( 2, 2 ) = ONE * CALL DLANV2( T( 1, 1 ), T( 1, 2 ), $ T( 2, 1 ), T( 2, 2 ), WR1, $ WI1, WR2, WI2, CS, SN ) DO 10 J1 = 1, 2 RES = Q( J1, 1 )*CS + Q( J1, 2 )*SN Q( J1, 2 ) = -Q( J1, 1 )*SN + $ Q( J1, 2 )*CS Q( J1, 1 ) = RES 10 CONTINUE * RES = ZERO RES = RES + ABS( Q( 1, 1 )**2+ $ Q( 1, 2 )**2-ONE ) / EPS RES = RES + ABS( Q( 2, 2 )**2+ $ Q( 2, 1 )**2-ONE ) / EPS RES = RES + ABS( Q( 1, 1 )*Q( 2, 1 )+ $ Q( 1, 2 )*Q( 2, 2 ) ) / EPS DO 40 J1 = 1, 2 DO 30 J2 = 1, 2 T2( J1, J2 ) = ZERO DO 20 J3 = 1, 2 T2( J1, J2 ) = T2( J1, J2 ) + $ T1( J1, J3 )* $ Q( J3, J2 ) 20 CONTINUE 30 CONTINUE 40 CONTINUE DO 70 J1 = 1, 2 DO 60 J2 = 1, 2 SUM = T( J1, J2 ) DO 50 J3 = 1, 2 SUM = SUM - Q( J3, J1 )* $ T2( J3, J2 ) 50 CONTINUE RES = RES + ABS( SUM ) / EPS / TNRM 60 CONTINUE 70 CONTINUE IF( T( 2, 1 ).NE.ZERO .AND. $ ( T( 1, 1 ).NE.T( 2, $ 2 ) .OR. SIGN( ONE, T( 1, $ 2 ) )*SIGN( ONE, T( 2, $ 1 ) ).GT.ZERO ) )RES = RES + ONE / EPS KNT = KNT + 1 IF( RES.GT.RMAX ) THEN LMAX = KNT RMAX = RES END IF 80 CONTINUE 90 CONTINUE 100 CONTINUE 110 CONTINUE 120 CONTINUE 130 CONTINUE 140 CONTINUE 150 CONTINUE * RETURN * * End of DGET33 * END