numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/dget37.f | 19144B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
*> \brief \b DGET37 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DGET37( RMAX, LMAX, NINFO, KNT, NIN ) * * .. Scalar Arguments .. * INTEGER KNT, NIN * .. * .. Array Arguments .. * INTEGER LMAX( 3 ), NINFO( 3 ) * DOUBLE PRECISION RMAX( 3 ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DGET37 tests DTRSNA, a routine for estimating condition numbers of *> eigenvalues and/or right eigenvectors of a matrix. *> *> The test matrices are read from a file with logical unit number NIN. *> \endverbatim * * Arguments: * ========== * *> \param[out] RMAX *> \verbatim *> RMAX is DOUBLE PRECISION array, dimension (3) *> Value of the largest test ratio. *> RMAX(1) = largest ratio comparing different calls to DTRSNA *> RMAX(2) = largest error in reciprocal condition *> numbers taking their conditioning into account *> RMAX(3) = largest error in reciprocal condition *> numbers not taking their conditioning into *> account (may be larger than RMAX(2)) *> \endverbatim *> *> \param[out] LMAX *> \verbatim *> LMAX is INTEGER array, dimension (3) *> LMAX(i) is example number where largest test ratio *> RMAX(i) is achieved. Also: *> If DGEHRD returns INFO nonzero on example i, LMAX(1)=i *> If DHSEQR returns INFO nonzero on example i, LMAX(2)=i *> If DTRSNA returns INFO nonzero on example i, LMAX(3)=i *> \endverbatim *> *> \param[out] NINFO *> \verbatim *> NINFO is INTEGER array, dimension (3) *> NINFO(1) = No. of times DGEHRD returned INFO nonzero *> NINFO(2) = No. of times DHSEQR returned INFO nonzero *> NINFO(3) = No. of times DTRSNA returned INFO nonzero *> \endverbatim *> *> \param[out] KNT *> \verbatim *> KNT is INTEGER *> Total number of examples tested. *> \endverbatim *> *> \param[in] NIN *> \verbatim *> NIN is INTEGER *> Input logical unit number *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DGET37( RMAX, LMAX, NINFO, KNT, NIN ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER KNT, NIN * .. * .. Array Arguments .. INTEGER LMAX( 3 ), NINFO( 3 ) DOUBLE PRECISION RMAX( 3 ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 ) DOUBLE PRECISION EPSIN PARAMETER ( EPSIN = 5.9605D-8 ) INTEGER LDT, LWORK PARAMETER ( LDT = 20, LWORK = 2*LDT*( 10+LDT ) ) * .. * .. Local Scalars .. INTEGER I, ICMP, IFND, INFO, ISCL, J, KMIN, M, N DOUBLE PRECISION BIGNUM, EPS, SMLNUM, TNRM, TOL, TOLIN, V, $ VIMIN, VMAX, VMUL, VRMIN * .. * .. Local Arrays .. LOGICAL SELECT( LDT ) INTEGER IWORK( 2*LDT ), LCMP( 3 ) DOUBLE PRECISION DUM( 1 ), LE( LDT, LDT ), RE( LDT, LDT ), $ S( LDT ), SEP( LDT ), SEPIN( LDT ), $ SEPTMP( LDT ), SIN( LDT ), STMP( LDT ), $ T( LDT, LDT ), TMP( LDT, LDT ), VAL( 3 ), $ WI( LDT ), WIIN( LDT ), WITMP( LDT ), $ WORK( LWORK ), WR( LDT ), WRIN( LDT ), $ WRTMP( LDT ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEHRD, DHSEQR, DLACPY, DSCAL, DTREVC, $ DTRSNA * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, SQRT * .. * .. Executable Statements .. * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) / EPS BIGNUM = ONE / SMLNUM * * EPSIN = 2**(-24) = precision to which input data computed * EPS = MAX( EPS, EPSIN ) RMAX( 1 ) = ZERO RMAX( 2 ) = ZERO RMAX( 3 ) = ZERO LMAX( 1 ) = 0 LMAX( 2 ) = 0 LMAX( 3 ) = 0 KNT = 0 NINFO( 1 ) = 0 NINFO( 2 ) = 0 NINFO( 3 ) = 0 * VAL( 1 ) = SQRT( SMLNUM ) VAL( 2 ) = ONE VAL( 3 ) = SQRT( BIGNUM ) * * Read input data until N=0. Assume input eigenvalues are sorted * lexicographically (increasing by real part, then decreasing by * imaginary part) * 10 CONTINUE READ( NIN, FMT = * )N IF( N.EQ.0 ) $ RETURN DO 20 I = 1, N READ( NIN, FMT = * )( TMP( I, J ), J = 1, N ) 20 CONTINUE DO 30 I = 1, N READ( NIN, FMT = * )WRIN( I ), WIIN( I ), SIN( I ), SEPIN( I ) 30 CONTINUE TNRM = DLANGE( 'M', N, N, TMP, LDT, WORK ) * * Begin test * DO 240 ISCL = 1, 3 * * Scale input matrix * KNT = KNT + 1 CALL DLACPY( 'F', N, N, TMP, LDT, T, LDT ) VMUL = VAL( ISCL ) DO 40 I = 1, N CALL DSCAL( N, VMUL, T( 1, I ), 1 ) 40 CONTINUE IF( TNRM.EQ.ZERO ) $ VMUL = ONE * * Compute eigenvalues and eigenvectors * CALL DGEHRD( N, 1, N, T, LDT, WORK( 1 ), WORK( N+1 ), LWORK-N, $ INFO ) IF( INFO.NE.0 ) THEN LMAX( 1 ) = KNT NINFO( 1 ) = NINFO( 1 ) + 1 GO TO 240 END IF DO 60 J = 1, N - 2 DO 50 I = J + 2, N T( I, J ) = ZERO 50 CONTINUE 60 CONTINUE * * Compute Schur form * CALL DHSEQR( 'S', 'N', N, 1, N, T, LDT, WR, WI, DUM, 1, WORK, $ LWORK, INFO ) IF( INFO.NE.0 ) THEN LMAX( 2 ) = KNT NINFO( 2 ) = NINFO( 2 ) + 1 GO TO 240 END IF * * Compute eigenvectors * CALL DTREVC( 'Both', 'All', SELECT, N, T, LDT, LE, LDT, RE, $ LDT, N, M, WORK, INFO ) * * Compute condition numbers * CALL DTRSNA( 'Both', 'All', SELECT, N, T, LDT, LE, LDT, RE, $ LDT, S, SEP, N, M, WORK, N, IWORK, INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF * * Sort eigenvalues and condition numbers lexicographically * to compare with inputs * CALL DCOPY( N, WR, 1, WRTMP, 1 ) CALL DCOPY( N, WI, 1, WITMP, 1 ) CALL DCOPY( N, S, 1, STMP, 1 ) CALL DCOPY( N, SEP, 1, SEPTMP, 1 ) CALL DSCAL( N, ONE / VMUL, SEPTMP, 1 ) DO 80 I = 1, N - 1 KMIN = I VRMIN = WRTMP( I ) VIMIN = WITMP( I ) DO 70 J = I + 1, N IF( WRTMP( J ).LT.VRMIN ) THEN KMIN = J VRMIN = WRTMP( J ) VIMIN = WITMP( J ) END IF 70 CONTINUE WRTMP( KMIN ) = WRTMP( I ) WITMP( KMIN ) = WITMP( I ) WRTMP( I ) = VRMIN WITMP( I ) = VIMIN VRMIN = STMP( KMIN ) STMP( KMIN ) = STMP( I ) STMP( I ) = VRMIN VRMIN = SEPTMP( KMIN ) SEPTMP( KMIN ) = SEPTMP( I ) SEPTMP( I ) = VRMIN 80 CONTINUE * * Compare condition numbers for eigenvalues * taking their condition numbers into account * V = MAX( TWO*DBLE( N )*EPS*TNRM, SMLNUM ) IF( TNRM.EQ.ZERO ) $ V = ONE DO 90 I = 1, N IF( V.GT.SEPTMP( I ) ) THEN TOL = ONE ELSE TOL = V / SEPTMP( I ) END IF IF( V.GT.SEPIN( I ) ) THEN TOLIN = ONE ELSE TOLIN = V / SEPIN( I ) END IF TOL = MAX( TOL, SMLNUM / EPS ) TOLIN = MAX( TOLIN, SMLNUM / EPS ) IF( EPS*( SIN( I )-TOLIN ).GT.STMP( I )+TOL ) THEN VMAX = ONE / EPS ELSE IF( SIN( I )-TOLIN.GT.STMP( I )+TOL ) THEN VMAX = ( SIN( I )-TOLIN ) / ( STMP( I )+TOL ) ELSE IF( SIN( I )+TOLIN.LT.EPS*( STMP( I )-TOL ) ) THEN VMAX = ONE / EPS ELSE IF( SIN( I )+TOLIN.LT.STMP( I )-TOL ) THEN VMAX = ( STMP( I )-TOL ) / ( SIN( I )+TOLIN ) ELSE VMAX = ONE END IF IF( VMAX.GT.RMAX( 2 ) ) THEN RMAX( 2 ) = VMAX IF( NINFO( 2 ).EQ.0 ) $ LMAX( 2 ) = KNT END IF 90 CONTINUE * * Compare condition numbers for eigenvectors * taking their condition numbers into account * DO 100 I = 1, N IF( V.GT.SEPTMP( I )*STMP( I ) ) THEN TOL = SEPTMP( I ) ELSE TOL = V / STMP( I ) END IF IF( V.GT.SEPIN( I )*SIN( I ) ) THEN TOLIN = SEPIN( I ) ELSE TOLIN = V / SIN( I ) END IF TOL = MAX( TOL, SMLNUM / EPS ) TOLIN = MAX( TOLIN, SMLNUM / EPS ) IF( EPS*( SEPIN( I )-TOLIN ).GT.SEPTMP( I )+TOL ) THEN VMAX = ONE / EPS ELSE IF( SEPIN( I )-TOLIN.GT.SEPTMP( I )+TOL ) THEN VMAX = ( SEPIN( I )-TOLIN ) / ( SEPTMP( I )+TOL ) ELSE IF( SEPIN( I )+TOLIN.LT.EPS*( SEPTMP( I )-TOL ) ) THEN VMAX = ONE / EPS ELSE IF( SEPIN( I )+TOLIN.LT.SEPTMP( I )-TOL ) THEN VMAX = ( SEPTMP( I )-TOL ) / ( SEPIN( I )+TOLIN ) ELSE VMAX = ONE END IF IF( VMAX.GT.RMAX( 2 ) ) THEN RMAX( 2 ) = VMAX IF( NINFO( 2 ).EQ.0 ) $ LMAX( 2 ) = KNT END IF 100 CONTINUE * * Compare condition numbers for eigenvalues * without taking their condition numbers into account * DO 110 I = 1, N IF( SIN( I ).LE.DBLE( 2*N )*EPS .AND. STMP( I ).LE. $ DBLE( 2*N )*EPS ) THEN VMAX = ONE ELSE IF( EPS*SIN( I ).GT.STMP( I ) ) THEN VMAX = ONE / EPS ELSE IF( SIN( I ).GT.STMP( I ) ) THEN VMAX = SIN( I ) / STMP( I ) ELSE IF( SIN( I ).LT.EPS*STMP( I ) ) THEN VMAX = ONE / EPS ELSE IF( SIN( I ).LT.STMP( I ) ) THEN VMAX = STMP( I ) / SIN( I ) ELSE VMAX = ONE END IF IF( VMAX.GT.RMAX( 3 ) ) THEN RMAX( 3 ) = VMAX IF( NINFO( 3 ).EQ.0 ) $ LMAX( 3 ) = KNT END IF 110 CONTINUE * * Compare condition numbers for eigenvectors * without taking their condition numbers into account * DO 120 I = 1, N IF( SEPIN( I ).LE.V .AND. SEPTMP( I ).LE.V ) THEN VMAX = ONE ELSE IF( EPS*SEPIN( I ).GT.SEPTMP( I ) ) THEN VMAX = ONE / EPS ELSE IF( SEPIN( I ).GT.SEPTMP( I ) ) THEN VMAX = SEPIN( I ) / SEPTMP( I ) ELSE IF( SEPIN( I ).LT.EPS*SEPTMP( I ) ) THEN VMAX = ONE / EPS ELSE IF( SEPIN( I ).LT.SEPTMP( I ) ) THEN VMAX = SEPTMP( I ) / SEPIN( I ) ELSE VMAX = ONE END IF IF( VMAX.GT.RMAX( 3 ) ) THEN RMAX( 3 ) = VMAX IF( NINFO( 3 ).EQ.0 ) $ LMAX( 3 ) = KNT END IF 120 CONTINUE * * Compute eigenvalue condition numbers only and compare * VMAX = ZERO DUM( 1 ) = -ONE CALL DCOPY( N, DUM, 0, STMP, 1 ) CALL DCOPY( N, DUM, 0, SEPTMP, 1 ) CALL DTRSNA( 'Eigcond', 'All', SELECT, N, T, LDT, LE, LDT, RE, $ LDT, STMP, SEPTMP, N, M, WORK, N, IWORK, INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF DO 130 I = 1, N IF( STMP( I ).NE.S( I ) ) $ VMAX = ONE / EPS IF( SEPTMP( I ).NE.DUM( 1 ) ) $ VMAX = ONE / EPS 130 CONTINUE * * Compute eigenvector condition numbers only and compare * CALL DCOPY( N, DUM, 0, STMP, 1 ) CALL DCOPY( N, DUM, 0, SEPTMP, 1 ) CALL DTRSNA( 'Veccond', 'All', SELECT, N, T, LDT, LE, LDT, RE, $ LDT, STMP, SEPTMP, N, M, WORK, N, IWORK, INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF DO 140 I = 1, N IF( STMP( I ).NE.DUM( 1 ) ) $ VMAX = ONE / EPS IF( SEPTMP( I ).NE.SEP( I ) ) $ VMAX = ONE / EPS 140 CONTINUE * * Compute all condition numbers using SELECT and compare * DO 150 I = 1, N SELECT( I ) = .TRUE. 150 CONTINUE CALL DCOPY( N, DUM, 0, STMP, 1 ) CALL DCOPY( N, DUM, 0, SEPTMP, 1 ) CALL DTRSNA( 'Bothcond', 'Some', SELECT, N, T, LDT, LE, LDT, $ RE, LDT, STMP, SEPTMP, N, M, WORK, N, IWORK, $ INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF DO 160 I = 1, N IF( SEPTMP( I ).NE.SEP( I ) ) $ VMAX = ONE / EPS IF( STMP( I ).NE.S( I ) ) $ VMAX = ONE / EPS 160 CONTINUE * * Compute eigenvalue condition numbers using SELECT and compare * CALL DCOPY( N, DUM, 0, STMP, 1 ) CALL DCOPY( N, DUM, 0, SEPTMP, 1 ) CALL DTRSNA( 'Eigcond', 'Some', SELECT, N, T, LDT, LE, LDT, RE, $ LDT, STMP, SEPTMP, N, M, WORK, N, IWORK, INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF DO 170 I = 1, N IF( STMP( I ).NE.S( I ) ) $ VMAX = ONE / EPS IF( SEPTMP( I ).NE.DUM( 1 ) ) $ VMAX = ONE / EPS 170 CONTINUE * * Compute eigenvector condition numbers using SELECT and compare * CALL DCOPY( N, DUM, 0, STMP, 1 ) CALL DCOPY( N, DUM, 0, SEPTMP, 1 ) CALL DTRSNA( 'Veccond', 'Some', SELECT, N, T, LDT, LE, LDT, RE, $ LDT, STMP, SEPTMP, N, M, WORK, N, IWORK, INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF DO 180 I = 1, N IF( STMP( I ).NE.DUM( 1 ) ) $ VMAX = ONE / EPS IF( SEPTMP( I ).NE.SEP( I ) ) $ VMAX = ONE / EPS 180 CONTINUE IF( VMAX.GT.RMAX( 1 ) ) THEN RMAX( 1 ) = VMAX IF( NINFO( 1 ).EQ.0 ) $ LMAX( 1 ) = KNT END IF * * Select first real and first complex eigenvalue * IF( WI( 1 ).EQ.ZERO ) THEN LCMP( 1 ) = 1 IFND = 0 DO 190 I = 2, N IF( IFND.EQ.1 .OR. WI( I ).EQ.ZERO ) THEN SELECT( I ) = .FALSE. ELSE IFND = 1 LCMP( 2 ) = I LCMP( 3 ) = I + 1 CALL DCOPY( N, RE( 1, I ), 1, RE( 1, 2 ), 1 ) CALL DCOPY( N, RE( 1, I+1 ), 1, RE( 1, 3 ), 1 ) CALL DCOPY( N, LE( 1, I ), 1, LE( 1, 2 ), 1 ) CALL DCOPY( N, LE( 1, I+1 ), 1, LE( 1, 3 ), 1 ) END IF 190 CONTINUE IF( IFND.EQ.0 ) THEN ICMP = 1 ELSE ICMP = 3 END IF ELSE LCMP( 1 ) = 1 LCMP( 2 ) = 2 IFND = 0 DO 200 I = 3, N IF( IFND.EQ.1 .OR. WI( I ).NE.ZERO ) THEN SELECT( I ) = .FALSE. ELSE LCMP( 3 ) = I IFND = 1 CALL DCOPY( N, RE( 1, I ), 1, RE( 1, 3 ), 1 ) CALL DCOPY( N, LE( 1, I ), 1, LE( 1, 3 ), 1 ) END IF 200 CONTINUE IF( IFND.EQ.0 ) THEN ICMP = 2 ELSE ICMP = 3 END IF END IF * * Compute all selected condition numbers * CALL DCOPY( ICMP, DUM, 0, STMP, 1 ) CALL DCOPY( ICMP, DUM, 0, SEPTMP, 1 ) CALL DTRSNA( 'Bothcond', 'Some', SELECT, N, T, LDT, LE, LDT, $ RE, LDT, STMP, SEPTMP, N, M, WORK, N, IWORK, $ INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF DO 210 I = 1, ICMP J = LCMP( I ) IF( SEPTMP( I ).NE.SEP( J ) ) $ VMAX = ONE / EPS IF( STMP( I ).NE.S( J ) ) $ VMAX = ONE / EPS 210 CONTINUE * * Compute selected eigenvalue condition numbers * CALL DCOPY( ICMP, DUM, 0, STMP, 1 ) CALL DCOPY( ICMP, DUM, 0, SEPTMP, 1 ) CALL DTRSNA( 'Eigcond', 'Some', SELECT, N, T, LDT, LE, LDT, RE, $ LDT, STMP, SEPTMP, N, M, WORK, N, IWORK, INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF DO 220 I = 1, ICMP J = LCMP( I ) IF( STMP( I ).NE.S( J ) ) $ VMAX = ONE / EPS IF( SEPTMP( I ).NE.DUM( 1 ) ) $ VMAX = ONE / EPS 220 CONTINUE * * Compute selected eigenvector condition numbers * CALL DCOPY( ICMP, DUM, 0, STMP, 1 ) CALL DCOPY( ICMP, DUM, 0, SEPTMP, 1 ) CALL DTRSNA( 'Veccond', 'Some', SELECT, N, T, LDT, LE, LDT, RE, $ LDT, STMP, SEPTMP, N, M, WORK, N, IWORK, INFO ) IF( INFO.NE.0 ) THEN LMAX( 3 ) = KNT NINFO( 3 ) = NINFO( 3 ) + 1 GO TO 240 END IF DO 230 I = 1, ICMP J = LCMP( I ) IF( STMP( I ).NE.DUM( 1 ) ) $ VMAX = ONE / EPS IF( SEPTMP( I ).NE.SEP( J ) ) $ VMAX = ONE / EPS 230 CONTINUE IF( VMAX.GT.RMAX( 1 ) ) THEN RMAX( 1 ) = VMAX IF( NINFO( 1 ).EQ.0 ) $ LMAX( 1 ) = KNT END IF 240 CONTINUE GO TO 10 * * End of DGET37 * END