numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/dlahd2.f | 21182B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
*> \brief \b DLAHD2 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DLAHD2( IOUNIT, PATH ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER IOUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLAHD2 prints header information for the different test paths. *> \endverbatim * * Arguments: * ========== * *> \param[in] IOUNIT *> \verbatim *> IOUNIT is INTEGER. *> On entry, IOUNIT specifies the unit number to which the *> header information should be printed. *> \endverbatim *> *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3. *> On entry, PATH contains the name of the path for which the *> header information is to be printed. Current paths are *> *> DHS, ZHS: Non-symmetric eigenproblem. *> DST, ZST: Symmetric eigenproblem. *> DSG, ZSG: Symmetric Generalized eigenproblem. *> DBD, ZBD: Singular Value Decomposition (SVD) *> DBB, ZBB: General Banded reduction to bidiagonal form *> *> These paths also are supplied in double precision (replace *> leading S by D and leading C by Z in path names). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DLAHD2( IOUNIT, PATH ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER IOUNIT * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL CORZ, SORD CHARACTER*2 C2 INTEGER J * .. * .. External Functions .. LOGICAL LSAME, LSAMEN EXTERNAL LSAME, LSAMEN * .. * .. Executable Statements .. * IF( IOUNIT.LE.0 ) $ RETURN SORD = LSAME( PATH, 'S' ) .OR. LSAME( PATH, 'D' ) CORZ = LSAME( PATH, 'C' ) .OR. LSAME( PATH, 'Z' ) IF( .NOT.SORD .AND. .NOT.CORZ ) THEN WRITE( IOUNIT, FMT = 9999 )PATH END IF C2 = PATH( 2: 3 ) * IF( LSAMEN( 2, C2, 'HS' ) ) THEN IF( SORD ) THEN * * Real Non-symmetric Eigenvalue Problem: * WRITE( IOUNIT, FMT = 9998 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9988 ) WRITE( IOUNIT, FMT = 9987 ) WRITE( IOUNIT, FMT = 9986 )'pairs ', 'pairs ', 'prs.', $ 'prs.' WRITE( IOUNIT, FMT = 9985 ) * * Tests performed * WRITE( IOUNIT, FMT = 9984 )'orthogonal', '''=transpose', $ ( '''', J = 1, 6 ) * ELSE * * Complex Non-symmetric Eigenvalue Problem: * WRITE( IOUNIT, FMT = 9997 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9988 ) WRITE( IOUNIT, FMT = 9987 ) WRITE( IOUNIT, FMT = 9986 )'e.vals', 'e.vals', 'e.vs', $ 'e.vs' WRITE( IOUNIT, FMT = 9985 ) * * Tests performed * WRITE( IOUNIT, FMT = 9984 )'unitary', '*=conj.transp.', $ ( '*', J = 1, 6 ) END IF * ELSE IF( LSAMEN( 2, C2, 'ST' ) ) THEN * IF( SORD ) THEN * * Real Symmetric Eigenvalue Problem: * WRITE( IOUNIT, FMT = 9996 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9983 ) WRITE( IOUNIT, FMT = 9982 ) WRITE( IOUNIT, FMT = 9981 )'Symmetric' * * Tests performed * WRITE( IOUNIT, FMT = 9968 ) * ELSE * * Complex Hermitian Eigenvalue Problem: * WRITE( IOUNIT, FMT = 9995 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9983 ) WRITE( IOUNIT, FMT = 9982 ) WRITE( IOUNIT, FMT = 9981 )'Hermitian' * * Tests performed * WRITE( IOUNIT, FMT = 9967 ) END IF * ELSE IF( LSAMEN( 2, C2, 'SG' ) ) THEN * IF( SORD ) THEN * * Real Symmetric Generalized Eigenvalue Problem: * WRITE( IOUNIT, FMT = 9992 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9980 ) WRITE( IOUNIT, FMT = 9979 ) WRITE( IOUNIT, FMT = 9978 )'Symmetric' * * Tests performed * WRITE( IOUNIT, FMT = 9977 ) WRITE( IOUNIT, FMT = 9976 ) * ELSE * * Complex Hermitian Generalized Eigenvalue Problem: * WRITE( IOUNIT, FMT = 9991 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9980 ) WRITE( IOUNIT, FMT = 9979 ) WRITE( IOUNIT, FMT = 9978 )'Hermitian' * * Tests performed * WRITE( IOUNIT, FMT = 9975 ) WRITE( IOUNIT, FMT = 9974 ) * END IF * ELSE IF( LSAMEN( 2, C2, 'BD' ) ) THEN * IF( SORD ) THEN * * Real Singular Value Decomposition: * WRITE( IOUNIT, FMT = 9994 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9973 ) * * Tests performed * WRITE( IOUNIT, FMT = 9972 )'orthogonal' WRITE( IOUNIT, FMT = 9971 ) ELSE * * Complex Singular Value Decomposition: * WRITE( IOUNIT, FMT = 9993 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9973 ) * * Tests performed * WRITE( IOUNIT, FMT = 9972 )'unitary ' WRITE( IOUNIT, FMT = 9971 ) END IF * ELSE IF( LSAMEN( 2, C2, 'BB' ) ) THEN * IF( SORD ) THEN * * Real General Band reduction to bidiagonal form: * WRITE( IOUNIT, FMT = 9990 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9970 ) * * Tests performed * WRITE( IOUNIT, FMT = 9969 )'orthogonal' ELSE * * Complex Band reduction to bidiagonal form: * WRITE( IOUNIT, FMT = 9989 )PATH * * Matrix types * WRITE( IOUNIT, FMT = 9970 ) * * Tests performed * WRITE( IOUNIT, FMT = 9969 )'unitary ' END IF * ELSE * WRITE( IOUNIT, FMT = 9999 )PATH RETURN END IF * RETURN * 9999 FORMAT( 1X, A3, ': no header available' ) 9998 FORMAT( / 1X, A3, ' -- Real Non-symmetric eigenvalue problem' ) 9997 FORMAT( / 1X, A3, ' -- Complex Non-symmetric eigenvalue problem' ) 9996 FORMAT( / 1X, A3, ' -- Real Symmetric eigenvalue problem' ) 9995 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' ) 9994 FORMAT( / 1X, A3, ' -- Real Singular Value Decomposition' ) 9993 FORMAT( / 1X, A3, ' -- Complex Singular Value Decomposition' ) 9992 FORMAT( / 1X, A3, ' -- Real Symmetric Generalized eigenvalue ', $ 'problem' ) 9991 FORMAT( / 1X, A3, ' -- Complex Hermitian Generalized eigenvalue ', $ 'problem' ) 9990 FORMAT( / 1X, A3, ' -- Real Band reduc. to bidiagonal form' ) 9989 FORMAT( / 1X, A3, ' -- Complex Band reduc. to bidiagonal form' ) * 9988 FORMAT( ' Matrix types (see xCHKHS for details): ' ) * 9987 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', $ ' ', ' 5=Diagonal: geometr. spaced entries.', $ / ' 2=Identity matrix. ', ' 6=Diagona', $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ', $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ', $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s', $ 'mall, evenly spaced.' ) 9986 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev', $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e', $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ', $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond', $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp', $ 'lex ', A6, / ' 12=Well-cond., random complex ', A6, ' ', $ ' 17=Ill-cond., large rand. complx ', A4, / ' 13=Ill-condi', $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.', $ ' complx ', A4 ) 9985 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ', $ 'with small random entries.', / ' 20=Matrix with large ran', $ 'dom entries. ' ) 9984 FORMAT( / ' Tests performed: ', '(H is Hessenberg, T is Schur,', $ ' U and Z are ', A, ',', / 20X, A, ', W is a diagonal matr', $ 'ix of eigenvalues,', / 20X, 'L and R are the left and rig', $ 'ht eigenvector matrices)', / ' 1 = | A - U H U', A1, ' |', $ ' / ( |A| n ulp ) ', ' 2 = | I - U U', A1, ' | / ', $ '( n ulp )', / ' 3 = | H - Z T Z', A1, ' | / ( |H| n ulp ', $ ') ', ' 4 = | I - Z Z', A1, ' | / ( n ulp )', $ / ' 5 = | A - UZ T (UZ)', A1, ' | / ( |A| n ulp ) ', $ ' 6 = | I - UZ (UZ)', A1, ' | / ( n ulp )', / ' 7 = | T(', $ 'e.vects.) - T(no e.vects.) | / ( |T| ulp )', / ' 8 = | W', $ '(e.vects.) - W(no e.vects.) | / ( |W| ulp )', / ' 9 = | ', $ 'TR - RW | / ( |T| |R| ulp ) ', ' 10 = | LT - WL | / (', $ ' |T| |L| ulp )', / ' 11= |HX - XW| / (|H| |X| ulp) (inv.', $ 'it)', ' 12= |YH - WY| / (|H| |Y| ulp) (inv.it)' ) * * Symmetric/Hermitian eigenproblem * 9983 FORMAT( ' Matrix types (see xDRVST for details): ' ) * 9982 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', $ ' ', ' 5=Diagonal: clustered entries.', / ' 2=', $ 'Identity matrix. ', ' 6=Diagonal: lar', $ 'ge, evenly spaced.', / ' 3=Diagonal: evenly spaced entri', $ 'es. ', ' 7=Diagonal: small, evenly spaced.', / ' 4=D', $ 'iagonal: geometr. spaced entries.' ) 9981 FORMAT( ' Dense ', A, ' Matrices:', / ' 8=Evenly spaced eigen', $ 'vals. ', ' 12=Small, evenly spaced eigenvals.', $ / ' 9=Geometrically spaced eigenvals. ', ' 13=Matrix ', $ 'with random O(1) entries.', / ' 10=Clustered eigenvalues.', $ ' ', ' 14=Matrix with large random entries.', $ / ' 11=Large, evenly spaced eigenvals. ', ' 15=Matrix ', $ 'with small random entries.' ) * * Symmetric/Hermitian Generalized eigenproblem * 9980 FORMAT( ' Matrix types (see xDRVSG for details): ' ) * 9979 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', $ ' ', ' 5=Diagonal: clustered entries.', / ' 2=', $ 'Identity matrix. ', ' 6=Diagonal: lar', $ 'ge, evenly spaced.', / ' 3=Diagonal: evenly spaced entri', $ 'es. ', ' 7=Diagonal: small, evenly spaced.', / ' 4=D', $ 'iagonal: geometr. spaced entries.' ) 9978 FORMAT( ' Dense or Banded ', A, ' Matrices: ', $ / ' 8=Evenly spaced eigenvals. ', $ ' 15=Matrix with small random entries.', $ / ' 9=Geometrically spaced eigenvals. ', $ ' 16=Evenly spaced eigenvals, KA=1, KB=1.', $ / ' 10=Clustered eigenvalues. ', $ ' 17=Evenly spaced eigenvals, KA=2, KB=1.', $ / ' 11=Large, evenly spaced eigenvals. ', $ ' 18=Evenly spaced eigenvals, KA=2, KB=2.', $ / ' 12=Small, evenly spaced eigenvals. ', $ ' 19=Evenly spaced eigenvals, KA=3, KB=1.', $ / ' 13=Matrix with random O(1) entries. ', $ ' 20=Evenly spaced eigenvals, KA=3, KB=2.', $ / ' 14=Matrix with large random entries.', $ ' 21=Evenly spaced eigenvals, KA=3, KB=3.' ) 9977 FORMAT( / ' Tests performed: ', $ / '( For each pair (A,B), where A is of the given type ', $ / ' and B is a random well-conditioned matrix. D is ', $ / ' diagonal, and Z is orthogonal. )', $ / ' 1 = DSYGV, with ITYPE=1 and UPLO=''U'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 2 = DSPGV, with ITYPE=1 and UPLO=''U'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 3 = DSBGV, with ITYPE=1 and UPLO=''U'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 4 = DSYGV, with ITYPE=1 and UPLO=''L'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 5 = DSPGV, with ITYPE=1 and UPLO=''L'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 6 = DSBGV, with ITYPE=1 and UPLO=''L'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ' ) 9976 FORMAT( ' 7 = DSYGV, with ITYPE=2 and UPLO=''U'':', $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', $ / ' 8 = DSPGV, with ITYPE=2 and UPLO=''U'':', $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', $ / ' 9 = DSPGV, with ITYPE=2 and UPLO=''L'':', $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', $ / '10 = DSPGV, with ITYPE=2 and UPLO=''L'':', $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', $ / '11 = DSYGV, with ITYPE=3 and UPLO=''U'':', $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', $ / '12 = DSPGV, with ITYPE=3 and UPLO=''U'':', $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', $ / '13 = DSYGV, with ITYPE=3 and UPLO=''L'':', $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', $ / '14 = DSPGV, with ITYPE=3 and UPLO=''L'':', $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ' ) 9975 FORMAT( / ' Tests performed: ', $ / '( For each pair (A,B), where A is of the given type ', $ / ' and B is a random well-conditioned matrix. D is ', $ / ' diagonal, and Z is unitary. )', $ / ' 1 = ZHEGV, with ITYPE=1 and UPLO=''U'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 2 = ZHPGV, with ITYPE=1 and UPLO=''U'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 3 = ZHBGV, with ITYPE=1 and UPLO=''U'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 4 = ZHEGV, with ITYPE=1 and UPLO=''L'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 5 = ZHPGV, with ITYPE=1 and UPLO=''L'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', $ / ' 6 = ZHBGV, with ITYPE=1 and UPLO=''L'':', $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ' ) 9974 FORMAT( ' 7 = ZHEGV, with ITYPE=2 and UPLO=''U'':', $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', $ / ' 8 = ZHPGV, with ITYPE=2 and UPLO=''U'':', $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', $ / ' 9 = ZHPGV, with ITYPE=2 and UPLO=''L'':', $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', $ / '10 = ZHPGV, with ITYPE=2 and UPLO=''L'':', $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', $ / '11 = ZHEGV, with ITYPE=3 and UPLO=''U'':', $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', $ / '12 = ZHPGV, with ITYPE=3 and UPLO=''U'':', $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', $ / '13 = ZHEGV, with ITYPE=3 and UPLO=''L'':', $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', $ / '14 = ZHPGV, with ITYPE=3 and UPLO=''L'':', $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ' ) * * Singular Value Decomposition * 9973 FORMAT( ' Matrix types (see xCHKBD for details):', $ / ' Diagonal matrices:', / ' 1: Zero', 28X, $ ' 5: Clustered entries', / ' 2: Identity', 24X, $ ' 6: Large, evenly spaced entries', $ / ' 3: Evenly spaced entries', 11X, $ ' 7: Small, evenly spaced entries', $ / ' 4: Geometrically spaced entries', $ / ' General matrices:', / ' 8: Evenly spaced sing. vals.', $ 7X, '12: Small, evenly spaced sing vals', $ / ' 9: Geometrically spaced sing vals ', $ '13: Random, O(1) entries', / ' 10: Clustered sing. vals.', $ 11X, '14: Random, scaled near overflow', $ / ' 11: Large, evenly spaced sing vals ', $ '15: Random, scaled near underflow' ) * 9972 FORMAT( / ' Test ratios: ', $ '(B: bidiagonal, S: diagonal, Q, P, U, and V: ', A10, / 16X, $ 'X: m x nrhs, Y = Q'' X, and Z = U'' Y)' ) 9971 FORMAT( ' 1: norm( A - Q B P'' ) / ( norm(A) max(m,n) ulp )', $ / ' 2: norm( I - Q'' Q ) / ( m ulp )', $ / ' 3: norm( I - P'' P ) / ( n ulp )', $ / ' 4: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )', $ / ' 5: norm( Y - U Z ) / ', $ '( norm(Z) max(min(m,n),k) ulp )', $ / ' 6: norm( I - U'' U ) / ( min(m,n) ulp )', $ / ' 7: norm( I - V'' V ) / ( min(m,n) ulp )', $ / ' 8: Test ordering of S (0 if nondecreasing, 1/ulp ', $ ' otherwise)', $ / ' 9: norm( S - S1 ) / ( norm(S) ulp ),', $ ' where S1 is computed', / 43X, $ ' without computing U and V''', $ / ' 10: Sturm sequence test ', $ '(0 if sing. vals of B within THRESH of S)', $ / ' 11: norm( A - (QU) S (V'' P'') ) / ', $ '( norm(A) max(m,n) ulp )', $ / ' 12: norm( X - (QU) Z ) / ( |X| max(M,k) ulp )', $ / ' 13: norm( I - (QU)''(QU) ) / ( M ulp )', $ / ' 14: norm( I - (V'' P'') (P V) ) / ( N ulp )', $ / ' 15: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )', $ / ' 16: norm( I - U'' U ) / ( min(m,n) ulp )', $ / ' 17: norm( I - V'' V ) / ( min(m,n) ulp )', $ / ' 18: Test ordering of S (0 if nondecreasing, 1/ulp ', $ ' otherwise)', $ / ' 19: norm( S - S1 ) / ( norm(S) ulp ),', $ ' where S1 is computed', / 43X, $ ' without computing U and V''', $ / ' 20: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )', $ ' DBDSVX(V,A)', $ / ' 21: norm( I - U'' U ) / ( min(m,n) ulp )', $ / ' 22: norm( I - V'' V ) / ( min(m,n) ulp )', $ / ' 23: Test ordering of S (0 if nondecreasing, 1/ulp ', $ ' otherwise)', $ / ' 24: norm( S - S1 ) / ( norm(S) ulp ),', $ ' where S1 is computed', / 44X, $ ' without computing U and V''', $ / ' 25: norm( S - U'' B V ) / ( norm(B) n ulp )', $ ' DBDSVX(V,I)', $ / ' 26: norm( I - U'' U ) / ( min(m,n) ulp )', $ / ' 27: norm( I - V'' V ) / ( min(m,n) ulp )', $ / ' 28: Test ordering of S (0 if nondecreasing, 1/ulp ', $ ' otherwise)', $ / ' 29: norm( S - S1 ) / ( norm(S) ulp ),', $ ' where S1 is computed', / 44X, $ ' without computing U and V''', $ / ' 30: norm( S - U'' B V ) / ( norm(B) n ulp )', $ ' DBDSVX(V,V)', $ / ' 31: norm( I - U'' U ) / ( min(m,n) ulp )', $ / ' 32: norm( I - V'' V ) / ( min(m,n) ulp )', $ / ' 33: Test ordering of S (0 if nondecreasing, 1/ulp ', $ ' otherwise)', $ / ' 34: norm( S - S1 ) / ( norm(S) ulp ),', $ ' where S1 is computed', / 44X, $ ' without computing U and V''' ) * * Band reduction to bidiagonal form * 9970 FORMAT( ' Matrix types (see xCHKBB for details):', $ / ' Diagonal matrices:', / ' 1: Zero', 28X, $ ' 5: Clustered entries', / ' 2: Identity', 24X, $ ' 6: Large, evenly spaced entries', $ / ' 3: Evenly spaced entries', 11X, $ ' 7: Small, evenly spaced entries', $ / ' 4: Geometrically spaced entries', $ / ' General matrices:', / ' 8: Evenly spaced sing. vals.', $ 7X, '12: Small, evenly spaced sing vals', $ / ' 9: Geometrically spaced sing vals ', $ '13: Random, O(1) entries', / ' 10: Clustered sing. vals.', $ 11X, '14: Random, scaled near overflow', $ / ' 11: Large, evenly spaced sing vals ', $ '15: Random, scaled near underflow' ) * 9969 FORMAT( / ' Test ratios: ', '(B: upper bidiagonal, Q and P: ', $ A10, / 16X, 'C: m x nrhs, PT = P'', Y = Q'' C)', $ / ' 1: norm( A - Q B PT ) / ( norm(A) max(m,n) ulp )', $ / ' 2: norm( I - Q'' Q ) / ( m ulp )', $ / ' 3: norm( I - PT PT'' ) / ( n ulp )', $ / ' 4: norm( Y - Q'' C ) / ( norm(Y) max(m,nrhs) ulp )' ) 9968 FORMAT( / ' Tests performed: See ddrvst.f' ) 9967 FORMAT( / ' Tests performed: See zdrvst.f' ) * * End of DLAHD2 * END