numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/dort01.f | 6253B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
*> \brief \b DORT01 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID ) * * .. Scalar Arguments .. * CHARACTER ROWCOL * INTEGER LDU, LWORK, M, N * DOUBLE PRECISION RESID * .. * .. Array Arguments .. * DOUBLE PRECISION U( LDU, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DORT01 checks that the matrix U is orthogonal by computing the ratio *> *> RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', *> or *> RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. *> *> Alternatively, if there isn't sufficient workspace to form *> I - U*U' or I - U'*U, the ratio is computed as *> *> RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', *> or *> RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. *> *> where EPS is the machine precision. ROWCOL is used only if m = n; *> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is *> assumed to be 'R'. *> \endverbatim * * Arguments: * ========== * *> \param[in] ROWCOL *> \verbatim *> ROWCOL is CHARACTER *> Specifies whether the rows or columns of U should be checked *> for orthogonality. Used only if M = N. *> = 'R': Check for orthogonal rows of U *> = 'C': Check for orthogonal columns of U *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix U. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix U. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is DOUBLE PRECISION array, dimension (LDU,N) *> The orthogonal matrix U. U is checked for orthogonal columns *> if m > n or if m = n and ROWCOL = 'C'. U is checked for *> orthogonal rows if m < n or if m = n and ROWCOL = 'R'. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of the array U. LDU >= max(1,M). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of the array WORK. For best performance, LWORK *> should be at least N*(N+1) if ROWCOL = 'C' or M*(M+1) if *> ROWCOL = 'R', but the test will be done even if LWORK is 0. *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is DOUBLE PRECISION *> RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or *> RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER ROWCOL INTEGER LDU, LWORK, M, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION U( LDU, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. CHARACTER TRANSU INTEGER I, J, K, LDWORK, MNMIN DOUBLE PRECISION EPS, TMP * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DDOT, DLAMCH, DLANSY EXTERNAL LSAME, DDOT, DLAMCH, DLANSY * .. * .. External Subroutines .. EXTERNAL DLASET, DSYRK * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Executable Statements .. * RESID = ZERO * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) $ RETURN * EPS = DLAMCH( 'Precision' ) IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN TRANSU = 'N' K = N ELSE TRANSU = 'T' K = M END IF MNMIN = MIN( M, N ) * IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN LDWORK = MNMIN ELSE LDWORK = 0 END IF IF( LDWORK.GT.0 ) THEN * * Compute I - U*U' or I - U'*U. * CALL DLASET( 'Upper', MNMIN, MNMIN, ZERO, ONE, WORK, LDWORK ) CALL DSYRK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK, $ LDWORK ) * * Compute norm( I - U*U' ) / ( K * EPS ) . * RESID = DLANSY( '1', 'Upper', MNMIN, WORK, LDWORK, $ WORK( LDWORK*MNMIN+1 ) ) RESID = ( RESID / DBLE( K ) ) / EPS ELSE IF( TRANSU.EQ.'T' ) THEN * * Find the maximum element in abs( I - U'*U ) / ( m * EPS ) * DO 20 J = 1, N DO 10 I = 1, J IF( I.NE.J ) THEN TMP = ZERO ELSE TMP = ONE END IF TMP = TMP - DDOT( M, U( 1, I ), 1, U( 1, J ), 1 ) RESID = MAX( RESID, ABS( TMP ) ) 10 CONTINUE 20 CONTINUE RESID = ( RESID / DBLE( M ) ) / EPS ELSE * * Find the maximum element in abs( I - U*U' ) / ( n * EPS ) * DO 40 J = 1, M DO 30 I = 1, J IF( I.NE.J ) THEN TMP = ZERO ELSE TMP = ONE END IF TMP = TMP - DDOT( N, U( J, 1 ), LDU, U( I, 1 ), LDU ) RESID = MAX( RESID, ABS( TMP ) ) 30 CONTINUE 40 CONTINUE RESID = ( RESID / DBLE( N ) ) / EPS END IF RETURN * * End of DORT01 * END