numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/dsvdch.f | 5711B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
*> \brief \b DSVDCH * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DSVDCH( N, S, E, SVD, TOL, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, N * DOUBLE PRECISION TOL * .. * .. Array Arguments .. * DOUBLE PRECISION E( * ), S( * ), SVD( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DSVDCH checks to see if SVD(1) ,..., SVD(N) are accurate singular *> values of the bidiagonal matrix B with diagonal entries *> S(1) ,..., S(N) and superdiagonal entries E(1) ,..., E(N-1)). *> It does this by expanding each SVD(I) into an interval *> [SVD(I) * (1-EPS) , SVD(I) * (1+EPS)], merging overlapping intervals *> if any, and using Sturm sequences to count and verify whether each *> resulting interval has the correct number of singular values (using *> DSVDCT). Here EPS=TOL*MAX(N/10,1)*MAZHEP, where MACHEP is the *> machine precision. The routine assumes the singular values are sorted *> with SVD(1) the largest and SVD(N) smallest. If each interval *> contains the correct number of singular values, INFO = 0 is returned, *> otherwise INFO is the index of the first singular value in the first *> bad interval. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The dimension of the bidiagonal matrix B. *> \endverbatim *> *> \param[in] S *> \verbatim *> S is DOUBLE PRECISION array, dimension (N) *> The diagonal entries of the bidiagonal matrix B. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is DOUBLE PRECISION array, dimension (N-1) *> The superdiagonal entries of the bidiagonal matrix B. *> \endverbatim *> *> \param[in] SVD *> \verbatim *> SVD is DOUBLE PRECISION array, dimension (N) *> The computed singular values to be checked. *> \endverbatim *> *> \param[in] TOL *> \verbatim *> TOL is DOUBLE PRECISION *> Error tolerance for checking, a multiplier of the *> machine precision. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> =0 if the singular values are all correct (to within *> 1 +- TOL*MAZHEPS) *> >0 if the interval containing the INFO-th singular value *> contains the incorrect number of singular values. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DSVDCH( N, S, E, SVD, TOL, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, N DOUBLE PRECISION TOL * .. * .. Array Arguments .. DOUBLE PRECISION E( * ), S( * ), SVD( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D0 ) DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. * .. Local Scalars .. INTEGER BPNT, COUNT, NUML, NUMU, TPNT DOUBLE PRECISION EPS, LOWER, OVFL, TUPPR, UNFL, UNFLEP, UPPER * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL DSVDCT * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Get machine constants * INFO = 0 IF( N.LE.0 ) $ RETURN UNFL = DLAMCH( 'Safe minimum' ) OVFL = DLAMCH( 'Overflow' ) EPS = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) * * UNFLEP is chosen so that when an eigenvalue is multiplied by the * scale factor sqrt(OVFL)*sqrt(sqrt(UNFL))/MX in DSVDCT, it exceeds * sqrt(UNFL), which is the lower limit for DSVDCT. * UNFLEP = ( SQRT( SQRT( UNFL ) ) / SQRT( OVFL ) )*SVD( 1 ) + $ UNFL / EPS * * The value of EPS works best when TOL .GE. 10. * EPS = TOL*MAX( N / 10, 1 )*EPS * * TPNT points to singular value at right endpoint of interval * BPNT points to singular value at left endpoint of interval * TPNT = 1 BPNT = 1 * * Begin loop over all intervals * 10 CONTINUE UPPER = ( ONE+EPS )*SVD( TPNT ) + UNFLEP LOWER = ( ONE-EPS )*SVD( BPNT ) - UNFLEP IF( LOWER.LE.UNFLEP ) $ LOWER = -UPPER * * Begin loop merging overlapping intervals * 20 CONTINUE IF( BPNT.EQ.N ) $ GO TO 30 TUPPR = ( ONE+EPS )*SVD( BPNT+1 ) + UNFLEP IF( TUPPR.LT.LOWER ) $ GO TO 30 * * Merge * BPNT = BPNT + 1 LOWER = ( ONE-EPS )*SVD( BPNT ) - UNFLEP IF( LOWER.LE.UNFLEP ) $ LOWER = -UPPER GO TO 20 30 CONTINUE * * Count singular values in interval [ LOWER, UPPER ] * CALL DSVDCT( N, S, E, LOWER, NUML ) CALL DSVDCT( N, S, E, UPPER, NUMU ) COUNT = NUMU - NUML IF( LOWER.LT.ZERO ) $ COUNT = COUNT / 2 IF( COUNT.NE.BPNT-TPNT+1 ) THEN * * Wrong number of singular values in interval * INFO = TPNT GO TO 40 END IF TPNT = BPNT + 1 BPNT = TPNT IF( TPNT.LE.N ) $ GO TO 10 40 CONTINUE RETURN * * End of DSVDCH * END