numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/dsyt21.f | 12907B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
*> \brief \b DSYT21 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DSYT21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V, * LDV, TAU, WORK, RESULT ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER ITYPE, KBAND, LDA, LDU, LDV, N * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ), * $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DSYT21 generally checks a decomposition of the form *> *> A = U S U**T *> *> where **T means transpose, A is symmetric, U is orthogonal, and S is *> diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1). *> *> If ITYPE=1, then U is represented as a dense matrix; otherwise U is *> expressed as a product of Householder transformations, whose vectors *> are stored in the array "V" and whose scaling constants are in "TAU". *> We shall use the letter "V" to refer to the product of Householder *> transformations (which should be equal to U). *> *> Specifically, if ITYPE=1, then: *> *> RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and *> RESULT(2) = | I - U U**T | / ( n ulp ) *> *> If ITYPE=2, then: *> *> RESULT(1) = | A - V S V**T | / ( |A| n ulp ) *> *> If ITYPE=3, then: *> *> RESULT(1) = | I - V U**T | / ( n ulp ) *> *> For ITYPE > 1, the transformation U is expressed as a product *> V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)**T and each *> vector v(j) has its first j elements 0 and the remaining n-j elements *> stored in V(j+1:n,j). *> \endverbatim * * Arguments: * ========== * *> \param[in] ITYPE *> \verbatim *> ITYPE is INTEGER *> Specifies the type of tests to be performed. *> 1: U expressed as a dense orthogonal matrix: *> RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and *> RESULT(2) = | I - U U**T | / ( n ulp ) *> *> 2: U expressed as a product V of Housholder transformations: *> RESULT(1) = | A - V S V**T | / ( |A| n ulp ) *> *> 3: U expressed both as a dense orthogonal matrix and *> as a product of Housholder transformations: *> RESULT(1) = | I - V U**T | / ( n ulp ) *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER *> If UPLO='U', the upper triangle of A and V will be used and *> the (strictly) lower triangle will not be referenced. *> If UPLO='L', the lower triangle of A and V will be used and *> the (strictly) upper triangle will not be referenced. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The size of the matrix. If it is zero, DSYT21 does nothing. *> It must be at least zero. *> \endverbatim *> *> \param[in] KBAND *> \verbatim *> KBAND is INTEGER *> The bandwidth of the matrix. It may only be zero or one. *> If zero, then S is diagonal, and E is not referenced. If *> one, then S is symmetric tri-diagonal. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA, N) *> The original (unfactored) matrix. It is assumed to be *> symmetric, and only the upper (UPLO='U') or only the lower *> (UPLO='L') will be referenced. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. It must be at least 1 *> and at least N. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (N) *> The diagonal of the (symmetric tri-) diagonal matrix. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is DOUBLE PRECISION array, dimension (N-1) *> The off-diagonal of the (symmetric tri-) diagonal matrix. *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and *> (3,2) element, etc. *> Not referenced if KBAND=0. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is DOUBLE PRECISION array, dimension (LDU, N) *> If ITYPE=1 or 3, this contains the orthogonal matrix in *> the decomposition, expressed as a dense matrix. If ITYPE=2, *> then it is not referenced. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of U. LDU must be at least N and *> at least 1. *> \endverbatim *> *> \param[in] V *> \verbatim *> V is DOUBLE PRECISION array, dimension (LDV, N) *> If ITYPE=2 or 3, the columns of this array contain the *> Householder vectors used to describe the orthogonal matrix *> in the decomposition. If UPLO='L', then the vectors are in *> the lower triangle, if UPLO='U', then in the upper *> triangle. *> *NOTE* If ITYPE=2 or 3, V is modified and restored. The *> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') *> is set to one, and later reset to its original value, during *> the course of the calculation. *> If ITYPE=1, then it is neither referenced nor modified. *> \endverbatim *> *> \param[in] LDV *> \verbatim *> LDV is INTEGER *> The leading dimension of V. LDV must be at least N and *> at least 1. *> \endverbatim *> *> \param[in] TAU *> \verbatim *> TAU is DOUBLE PRECISION array, dimension (N) *> If ITYPE >= 2, then TAU(j) is the scalar factor of *> v(j) v(j)**T in the Householder transformation H(j) of *> the product U = H(1)...H(n-2) *> If ITYPE < 2, then TAU is not referenced. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (2*N**2) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (2) *> The values computed by the two tests described above. The *> values are currently limited to 1/ulp, to avoid overflow. *> RESULT(1) is always modified. RESULT(2) is modified only *> if ITYPE=1. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DSYT21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V, $ LDV, TAU, WORK, RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER ITYPE, KBAND, LDA, LDU, LDV, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ), $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TEN PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 ) * .. * .. Local Scalars .. LOGICAL LOWER CHARACTER CUPLO INTEGER IINFO, J, JCOL, JR, JROW DOUBLE PRECISION ANORM, ULP, UNFL, VSAVE, WNORM * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLANGE, DLANSY EXTERNAL LSAME, DLAMCH, DLANGE, DLANSY * .. * .. External Subroutines .. EXTERNAL DGEMM, DLACPY, DLARFY, DLASET, DORM2L, DORM2R, $ DSYR, DSYR2 * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO IF( ITYPE.EQ.1 ) $ RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * IF( LSAME( UPLO, 'U' ) ) THEN LOWER = .FALSE. CUPLO = 'U' ELSE LOWER = .TRUE. CUPLO = 'L' END IF * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) * * Some Error Checks * IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN RESULT( 1 ) = TEN / ULP RETURN END IF * * Do Test 1 * * Norm of A: * IF( ITYPE.EQ.3 ) THEN ANORM = ONE ELSE ANORM = MAX( DLANSY( '1', CUPLO, N, A, LDA, WORK ), UNFL ) END IF * * Compute error matrix: * IF( ITYPE.EQ.1 ) THEN * * ITYPE=1: error = A - U S U**T * CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N ) CALL DLACPY( CUPLO, N, N, A, LDA, WORK, N ) * DO 10 J = 1, N CALL DSYR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N ) 10 CONTINUE * IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN DO 20 J = 1, N - 1 CALL DSYR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ), $ 1, WORK, N ) 20 CONTINUE END IF WNORM = DLANSY( '1', CUPLO, N, WORK, N, WORK( N**2+1 ) ) * ELSE IF( ITYPE.EQ.2 ) THEN * * ITYPE=2: error = V S V**T - A * CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N ) * IF( LOWER ) THEN WORK( N**2 ) = D( N ) DO 40 J = N - 1, 1, -1 IF( KBAND.EQ.1 ) THEN WORK( ( N+1 )*( J-1 )+2 ) = ( ONE-TAU( J ) )*E( J ) DO 30 JR = J + 2, N WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J ) 30 CONTINUE END IF * VSAVE = V( J+1, J ) V( J+1, J ) = ONE CALL DLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ), $ WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) ) V( J+1, J ) = VSAVE WORK( ( N+1 )*( J-1 )+1 ) = D( J ) 40 CONTINUE ELSE WORK( 1 ) = D( 1 ) DO 60 J = 1, N - 1 IF( KBAND.EQ.1 ) THEN WORK( ( N+1 )*J ) = ( ONE-TAU( J ) )*E( J ) DO 50 JR = 1, J - 1 WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 ) 50 CONTINUE END IF * VSAVE = V( J, J+1 ) V( J, J+1 ) = ONE CALL DLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N, $ WORK( N**2+1 ) ) V( J, J+1 ) = VSAVE WORK( ( N+1 )*J+1 ) = D( J+1 ) 60 CONTINUE END IF * DO 90 JCOL = 1, N IF( LOWER ) THEN DO 70 JROW = JCOL, N WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) ) $ - A( JROW, JCOL ) 70 CONTINUE ELSE DO 80 JROW = 1, JCOL WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) ) $ - A( JROW, JCOL ) 80 CONTINUE END IF 90 CONTINUE WNORM = DLANSY( '1', CUPLO, N, WORK, N, WORK( N**2+1 ) ) * ELSE IF( ITYPE.EQ.3 ) THEN * * ITYPE=3: error = U V**T - I * IF( N.LT.2 ) $ RETURN CALL DLACPY( ' ', N, N, U, LDU, WORK, N ) IF( LOWER ) THEN CALL DORM2R( 'R', 'T', N, N-1, N-1, V( 2, 1 ), LDV, TAU, $ WORK( N+1 ), N, WORK( N**2+1 ), IINFO ) ELSE CALL DORM2L( 'R', 'T', N, N-1, N-1, V( 1, 2 ), LDV, TAU, $ WORK, N, WORK( N**2+1 ), IINFO ) END IF IF( IINFO.NE.0 ) THEN RESULT( 1 ) = TEN / ULP RETURN END IF * DO 100 J = 1, N WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE 100 CONTINUE * WNORM = DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ) END IF * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP ) END IF END IF * * Do Test 2 * * Compute U U**T - I * IF( ITYPE.EQ.1 ) THEN CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK, $ N ) * DO 110 J = 1, N WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE 110 CONTINUE * RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N, $ WORK( N**2+1 ) ), DBLE( N ) ) / ( N*ULP ) END IF * RETURN * * End of DSYT21 * END