numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/EIG/dsyt21.f 12907B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
*> \brief \b DSYT21
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DSYT21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
*                          LDV, TAU, WORK, RESULT )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
*      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DSYT21 generally checks a decomposition of the form
*>
*>    A = U S U**T
*>
*> where **T means transpose, A is symmetric, U is orthogonal, and S is
*> diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
*>
*> If ITYPE=1, then U is represented as a dense matrix; otherwise U is
*> expressed as a product of Householder transformations, whose vectors
*> are stored in the array "V" and whose scaling constants are in "TAU".
*> We shall use the letter "V" to refer to the product of Householder
*> transformations (which should be equal to U).
*>
*> Specifically, if ITYPE=1, then:
*>
*>    RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
*>    RESULT(2) = | I - U U**T | / ( n ulp )
*>
*> If ITYPE=2, then:
*>
*>    RESULT(1) = | A - V S V**T | / ( |A| n ulp )
*>
*> If ITYPE=3, then:
*>
*>    RESULT(1) = | I - V U**T | / ( n ulp )
*>
*> For ITYPE > 1, the transformation U is expressed as a product
*> V = H(1)...H(n-2),  where H(j) = I  -  tau(j) v(j) v(j)**T and each
*> vector v(j) has its first j elements 0 and the remaining n-j elements
*> stored in V(j+1:n,j).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ITYPE
*> \verbatim
*>          ITYPE is INTEGER
*>          Specifies the type of tests to be performed.
*>          1: U expressed as a dense orthogonal matrix:
*>             RESULT(1) = | A - U S U**T | / ( |A| n ulp )  and
*>             RESULT(2) = | I - U U**T | / ( n ulp )
*>
*>          2: U expressed as a product V of Housholder transformations:
*>             RESULT(1) = | A - V S V**T | / ( |A| n ulp )
*>
*>          3: U expressed both as a dense orthogonal matrix and
*>             as a product of Housholder transformations:
*>             RESULT(1) = | I - V U**T | / ( n ulp )
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER
*>          If UPLO='U', the upper triangle of A and V will be used and
*>          the (strictly) lower triangle will not be referenced.
*>          If UPLO='L', the lower triangle of A and V will be used and
*>          the (strictly) upper triangle will not be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The size of the matrix.  If it is zero, DSYT21 does nothing.
*>          It must be at least zero.
*> \endverbatim
*>
*> \param[in] KBAND
*> \verbatim
*>          KBAND is INTEGER
*>          The bandwidth of the matrix.  It may only be zero or one.
*>          If zero, then S is diagonal, and E is not referenced.  If
*>          one, then S is symmetric tri-diagonal.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
*>          The original (unfactored) matrix.  It is assumed to be
*>          symmetric, and only the upper (UPLO='U') or only the lower
*>          (UPLO='L') will be referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  It must be at least 1
*>          and at least N.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The diagonal of the (symmetric tri-) diagonal matrix.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>          The off-diagonal of the (symmetric tri-) diagonal matrix.
*>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
*>          (3,2) element, etc.
*>          Not referenced if KBAND=0.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*>          U is DOUBLE PRECISION array, dimension (LDU, N)
*>          If ITYPE=1 or 3, this contains the orthogonal matrix in
*>          the decomposition, expressed as a dense matrix.  If ITYPE=2,
*>          then it is not referenced.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of U.  LDU must be at least N and
*>          at least 1.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*>          V is DOUBLE PRECISION array, dimension (LDV, N)
*>          If ITYPE=2 or 3, the columns of this array contain the
*>          Householder vectors used to describe the orthogonal matrix
*>          in the decomposition.  If UPLO='L', then the vectors are in
*>          the lower triangle, if UPLO='U', then in the upper
*>          triangle.
*>          *NOTE* If ITYPE=2 or 3, V is modified and restored.  The
*>          subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
*>          is set to one, and later reset to its original value, during
*>          the course of the calculation.
*>          If ITYPE=1, then it is neither referenced nor modified.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of V.  LDV must be at least N and
*>          at least 1.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is DOUBLE PRECISION array, dimension (N)
*>          If ITYPE >= 2, then TAU(j) is the scalar factor of
*>          v(j) v(j)**T in the Householder transformation H(j) of
*>          the product  U = H(1)...H(n-2)
*>          If ITYPE < 2, then TAU is not referenced.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (2*N**2)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (2)
*>          The values computed by the two tests described above.  The
*>          values are currently limited to 1/ulp, to avoid overflow.
*>          RESULT(1) is always modified.  RESULT(2) is modified only
*>          if ITYPE=1.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DSYT21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
     $                   LDV, TAU, WORK, RESULT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            ITYPE, KBAND, LDA, LDU, LDV, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
     $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TEN
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER
      CHARACTER          CUPLO
      INTEGER            IINFO, J, JCOL, JR, JROW
      DOUBLE PRECISION   ANORM, ULP, UNFL, VSAVE, WNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
      EXTERNAL           LSAME, DLAMCH, DLANGE, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DLACPY, DLARFY, DLASET, DORM2L, DORM2R,
     $                   DSYR, DSYR2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      RESULT( 1 ) = ZERO
      IF( ITYPE.EQ.1 )
     $   RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         LOWER = .FALSE.
         CUPLO = 'U'
      ELSE
         LOWER = .TRUE.
         CUPLO = 'L'
      END IF
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
*     Some Error Checks
*
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         RESULT( 1 ) = TEN / ULP
         RETURN
      END IF
*
*     Do Test 1
*
*     Norm of A:
*
      IF( ITYPE.EQ.3 ) THEN
         ANORM = ONE
      ELSE
         ANORM = MAX( DLANSY( '1', CUPLO, N, A, LDA, WORK ), UNFL )
      END IF
*
*     Compute error matrix:
*
      IF( ITYPE.EQ.1 ) THEN
*
*        ITYPE=1: error = A - U S U**T
*
         CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
         CALL DLACPY( CUPLO, N, N, A, LDA, WORK, N )
*
         DO 10 J = 1, N
            CALL DSYR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N )
   10    CONTINUE
*
         IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
            DO 20 J = 1, N - 1
               CALL DSYR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ),
     $                     1, WORK, N )
   20       CONTINUE
         END IF
         WNORM = DLANSY( '1', CUPLO, N, WORK, N, WORK( N**2+1 ) )
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        ITYPE=2: error = V S V**T - A
*
         CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
*
         IF( LOWER ) THEN
            WORK( N**2 ) = D( N )
            DO 40 J = N - 1, 1, -1
               IF( KBAND.EQ.1 ) THEN
                  WORK( ( N+1 )*( J-1 )+2 ) = ( ONE-TAU( J ) )*E( J )
                  DO 30 JR = J + 2, N
                     WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J )
   30             CONTINUE
               END IF
*
               VSAVE = V( J+1, J )
               V( J+1, J ) = ONE
               CALL DLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ),
     $                      WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) )
               V( J+1, J ) = VSAVE
               WORK( ( N+1 )*( J-1 )+1 ) = D( J )
   40       CONTINUE
         ELSE
            WORK( 1 ) = D( 1 )
            DO 60 J = 1, N - 1
               IF( KBAND.EQ.1 ) THEN
                  WORK( ( N+1 )*J ) = ( ONE-TAU( J ) )*E( J )
                  DO 50 JR = 1, J - 1
                     WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 )
   50             CONTINUE
               END IF
*
               VSAVE = V( J, J+1 )
               V( J, J+1 ) = ONE
               CALL DLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N,
     $                      WORK( N**2+1 ) )
               V( J, J+1 ) = VSAVE
               WORK( ( N+1 )*J+1 ) = D( J+1 )
   60       CONTINUE
         END IF
*
         DO 90 JCOL = 1, N
            IF( LOWER ) THEN
               DO 70 JROW = JCOL, N
                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
     $                - A( JROW, JCOL )
   70          CONTINUE
            ELSE
               DO 80 JROW = 1, JCOL
                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
     $                - A( JROW, JCOL )
   80          CONTINUE
            END IF
   90    CONTINUE
         WNORM = DLANSY( '1', CUPLO, N, WORK, N, WORK( N**2+1 ) )
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        ITYPE=3: error = U V**T - I
*
         IF( N.LT.2 )
     $      RETURN
         CALL DLACPY( ' ', N, N, U, LDU, WORK, N )
         IF( LOWER ) THEN
            CALL DORM2R( 'R', 'T', N, N-1, N-1, V( 2, 1 ), LDV, TAU,
     $                   WORK( N+1 ), N, WORK( N**2+1 ), IINFO )
         ELSE
            CALL DORM2L( 'R', 'T', N, N-1, N-1, V( 1, 2 ), LDV, TAU,
     $                   WORK, N, WORK( N**2+1 ), IINFO )
         END IF
         IF( IINFO.NE.0 ) THEN
            RESULT( 1 ) = TEN / ULP
            RETURN
         END IF
*
         DO 100 J = 1, N
            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
  100    CONTINUE
*
         WNORM = DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) )
      END IF
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  U U**T - I
*
      IF( ITYPE.EQ.1 ) THEN
         CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
     $               N )
*
         DO 110 J = 1, N
            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
  110    CONTINUE
*
         RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N,
     $                 WORK( N**2+1 ) ), DBLE( N ) ) / ( N*ULP )
      END IF
*
      RETURN
*
*     End of DSYT21
*
      END