numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/sdrvev.f | 34073B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
*> \brief \b SDRVEV * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL, * VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK, * IWORK, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES, * $ NTYPES, NWORK * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ), * $ RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ), * $ WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SDRVEV checks the nonsymmetric eigenvalue problem driver SGEEV. *> *> When SDRVEV is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix will be generated and used *> to test the nonsymmetric eigenroutines. For each matrix, 7 *> tests will be performed: *> *> (1) | A * VR - VR * W | / ( n |A| ulp ) *> *> Here VR is the matrix of unit right eigenvectors. *> W is a block diagonal matrix, with a 1x1 block for each *> real eigenvalue and a 2x2 block for each complex conjugate *> pair. If eigenvalues j and j+1 are a complex conjugate pair, *> so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the *> 2 x 2 block corresponding to the pair will be: *> *> ( wr wi ) *> ( -wi wr ) *> *> Such a block multiplying an n x 2 matrix ( ur ui ) on the *> right will be the same as multiplying ur + i*ui by wr + i*wi. *> *> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) *> *> Here VL is the matrix of unit left eigenvectors, A**H is the *> conjugate transpose of A, and W is as above. *> *> (3) | |VR(i)| - 1 | / ulp and whether largest component real *> *> VR(i) denotes the i-th column of VR. *> *> (4) | |VL(i)| - 1 | / ulp and whether largest component real *> *> VL(i) denotes the i-th column of VL. *> *> (5) W(full) = W(partial) *> *> W(full) denotes the eigenvalues computed when both VR and VL *> are also computed, and W(partial) denotes the eigenvalues *> computed when only W, only W and VR, or only W and VL are *> computed. *> *> (6) VR(full) = VR(partial) *> *> VR(full) denotes the right eigenvectors computed when both VR *> and VL are computed, and VR(partial) denotes the result *> when only VR is computed. *> *> (7) VL(full) = VL(partial) *> *> VL(full) denotes the left eigenvectors computed when both VR *> and VL are also computed, and VL(partial) denotes the result *> when only VL is computed. *> *> The "sizes" are specified by an array NN(1:NSIZES); the value of *> each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> (3) A (transposed) Jordan block, with 1's on the diagonal. *> *> (4) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (5) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random signs. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random signs. *> *> (7) Same as (4), but multiplied by a constant near *> the overflow threshold *> (8) Same as (4), but multiplied by a constant near *> the underflow threshold *> *> (9) A matrix of the form U' T U, where U is orthogonal and *> T has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal and random O(1) entries in the upper *> triangle. *> *> (10) A matrix of the form U' T U, where U is orthogonal and *> T has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal and random O(1) entries in the upper *> triangle. *> *> (11) A matrix of the form U' T U, where U is orthogonal and *> T has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal and random O(1) entries in the upper *> triangle. *> *> (12) A matrix of the form U' T U, where U is orthogonal and *> T has real or complex conjugate paired eigenvalues randomly *> chosen from ( ULP, 1 ) and random O(1) entries in the upper *> triangle. *> *> (13) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP *> with random signs on the diagonal and random O(1) entries *> in the upper triangle. *> *> (14) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has geometrically spaced entries *> 1, ..., ULP with random signs on the diagonal and random *> O(1) entries in the upper triangle. *> *> (15) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP *> with random signs on the diagonal and random O(1) entries *> in the upper triangle. *> *> (16) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has real or complex conjugate paired *> eigenvalues randomly chosen from ( ULP, 1 ) and random *> O(1) entries in the upper triangle. *> *> (17) Same as (16), but multiplied by a constant *> near the overflow threshold *> (18) Same as (16), but multiplied by a constant *> near the underflow threshold *> *> (19) Nonsymmetric matrix with random entries chosen from (-1,1). *> If N is at least 4, all entries in first two rows and last *> row, and first column and last two columns are zero. *> (20) Same as (19), but multiplied by a constant *> near the overflow threshold *> (21) Same as (19), but multiplied by a constant *> near the underflow threshold *> \endverbatim * * Arguments: * ========== * *> \param[in] NSIZES *> \verbatim *> NSIZES is INTEGER *> The number of sizes of matrices to use. If it is zero, *> SDRVEV does nothing. It must be at least zero. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> \endverbatim *> *> \param[in] NTYPES *> \verbatim *> NTYPES is INTEGER *> The number of elements in DOTYPE. If it is zero, SDRVEV *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> \endverbatim *> *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to SDRVEV to continue the same random number *> sequence. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] NOUNIT *> \verbatim *> NOUNIT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns INFO not equal to 0.) *> \endverbatim *> *> \param[out] A *> \verbatim *> A is REAL array, dimension (LDA, max(NN)) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually used. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A, and H. LDA must be at *> least 1 and at least max(NN). *> \endverbatim *> *> \param[out] H *> \verbatim *> H is REAL array, dimension (LDA, max(NN)) *> Another copy of the test matrix A, modified by SGEEV. *> \endverbatim *> *> \param[out] WR *> \verbatim *> WR is REAL array, dimension (max(NN)) *> \endverbatim *> *> \param[out] WI *> \verbatim *> WI is REAL array, dimension (max(NN)) *> *> The real and imaginary parts of the eigenvalues of A. *> On exit, WR + WI*i are the eigenvalues of the matrix in A. *> \endverbatim *> *> \param[out] WR1 *> \verbatim *> WR1 is REAL array, dimension (max(NN)) *> \endverbatim *> *> \param[out] WI1 *> \verbatim *> WI1 is REAL array, dimension (max(NN)) *> *> Like WR, WI, these arrays contain the eigenvalues of A, *> but those computed when SGEEV only computes a partial *> eigendecomposition, i.e. not the eigenvalues and left *> and right eigenvectors. *> \endverbatim *> *> \param[out] VL *> \verbatim *> VL is REAL array, dimension (LDVL, max(NN)) *> VL holds the computed left eigenvectors. *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> Leading dimension of VL. Must be at least max(1,max(NN)). *> \endverbatim *> *> \param[out] VR *> \verbatim *> VR is REAL array, dimension (LDVR, max(NN)) *> VR holds the computed right eigenvectors. *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> Leading dimension of VR. Must be at least max(1,max(NN)). *> \endverbatim *> *> \param[out] LRE *> \verbatim *> LRE is REAL array, dimension (LDLRE,max(NN)) *> LRE holds the computed right or left eigenvectors. *> \endverbatim *> *> \param[in] LDLRE *> \verbatim *> LDLRE is INTEGER *> Leading dimension of LRE. Must be at least max(1,max(NN)). *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (7) *> The values computed by the seven tests described above. *> The values are currently limited to 1/ulp, to avoid overflow. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (NWORK) *> \endverbatim *> *> \param[in] NWORK *> \verbatim *> NWORK is INTEGER *> The number of entries in WORK. This must be at least *> 5*NN(j)+2*NN(j)**2 for all j. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (max(NN)) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some NN(j) < 0 *> -3: NTYPES < 0 *> -6: THRESH < 0 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). *> -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ). *> -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ). *> -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ). *> -23: NWORK too small. *> If SLATMR, SLATMS, SLATME or SGEEV returns an error code, *> the absolute value of it is returned. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NMAX Largest value in NN. *> NERRS The number of tests which have exceeded THRESH *> COND, CONDS, *> IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTULP, RTULPI Square roots of the previous 4 values. *> *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> KCONDS(j) Selectw whether CONDS is to be 1 or *> 1/sqrt(ulp). (0 means irrelevant.) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL, $ VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK, $ IWORK, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES, $ NTYPES, NWORK REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ), $ RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ), $ WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) REAL TWO PARAMETER ( TWO = 2.0E0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) * .. * .. Local Scalars .. LOGICAL BADNN CHARACTER*3 PATH INTEGER IINFO, IMODE, ITYPE, IWK, J, JCOL, JJ, JSIZE, $ JTYPE, MTYPES, N, NERRS, NFAIL, NMAX, $ NNWORK, NTEST, NTESTF, NTESTT REAL ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TNRM, $ ULP, ULPINV, UNFL, VMX, VRMX, VTST * .. * .. Local Arrays .. CHARACTER ADUMMA( 1 ) INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) REAL DUM( 1 ), RES( 2 ) * .. * .. External Functions .. REAL SLAMCH, SLAPY2, SNRM2 EXTERNAL SLAMCH, SLAPY2, SNRM2 * .. * .. External Subroutines .. EXTERNAL SGEEV, SGET22, SLACPY, SLASUM, SLATME, $ SLATMR, SLATMS, SLASET, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 / DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2, $ 3, 1, 2, 3 / DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3, $ 1, 5, 5, 5, 4, 3, 1 / DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 / * .. * .. Executable Statements .. * PATH( 1: 1 ) = 'Single precision' PATH( 2: 3 ) = 'EV' * * Check for errors * NTESTT = 0 NTESTF = 0 INFO = 0 * * Important constants * BADNN = .FALSE. NMAX = 0 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -6 ELSE IF( NOUNIT.LE.0 ) THEN INFO = -7 ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN INFO = -16 ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN INFO = -18 ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN INFO = -20 ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN INFO = -23 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SDRVEV', -INFO ) RETURN END IF * * Quick return if nothing to do * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More Important constants * UNFL = SLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL ULP = SLAMCH( 'Precision' ) ULPINV = ONE / ULP RTULP = SQRT( ULP ) RTULPI = ONE / RTULP * * Loop over sizes, types * NERRS = 0 * DO 270 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 260 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 260 * * Save ISEED in case of an error. * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * * Compute "A" * * Control parameters: * * KMAGN KCONDS KMODE KTYPE * =1 O(1) 1 clustered 1 zero * =2 large large clustered 2 identity * =3 small exponential Jordan * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log symmetric, w/ eigenvalues * =6 random general, w/ eigenvalues * =7 random diagonal * =8 random symmetric * =9 random general * =10 random triangular * IF( MTYPES.GT.MAXTYP ) $ GO TO 90 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 30, 40, 50 )KMAGN( JTYPE ) * 30 CONTINUE ANORM = ONE GO TO 60 * 40 CONTINUE ANORM = OVFL*ULP GO TO 60 * 50 CONTINUE ANORM = UNFL*ULPINV GO TO 60 * 60 CONTINUE * CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) IINFO = 0 COND = ULPINV * * Special Matrices -- Identity & Jordan block * * Zero * IF( ITYPE.EQ.1 ) THEN IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 70 JCOL = 1, N A( JCOL, JCOL ) = ANORM 70 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * Jordan Block * DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM IF( JCOL.GT.1 ) $ A( JCOL, JCOL-1 ) = ONE 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Symmetric, eigenvalues specified * CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.6 ) THEN * * General, eigenvalues specified * IF( KCONDS( JTYPE ).EQ.1 ) THEN CONDS = ONE ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN CONDS = RTULPI ELSE CONDS = ZERO END IF * ADUMMA( 1 ) = ' ' CALL SLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE, $ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4, $ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Symmetric, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * General, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) IF( N.GE.4 ) THEN CALL SLASET( 'Full', 2, N, ZERO, ZERO, A, LDA ) CALL SLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ), $ LDA ) CALL SLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ), $ LDA ) CALL SLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ), $ LDA ) END IF * ELSE IF( ITYPE.EQ.10 ) THEN * * Triangular, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9993 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 90 CONTINUE * * Test for minimal and generous workspace * DO 250 IWK = 1, 2 IF( IWK.EQ.1 ) THEN NNWORK = 4*N ELSE NNWORK = 5*N + 2*N**2 END IF NNWORK = MAX( NNWORK, 1 ) * * Initialize RESULT * DO 100 J = 1, 7 RESULT( J ) = -ONE 100 CONTINUE * * Compute eigenvalues and eigenvectors, and test them * CALL SLACPY( 'F', N, N, A, LDA, H, LDA ) CALL SGEEV( 'V', 'V', N, H, LDA, WR, WI, VL, LDVL, VR, $ LDVR, WORK, NNWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUNIT, FMT = 9993 )'SGEEV1', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 220 END IF * * Do Test (1) * CALL SGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, WR, WI, $ WORK, RES ) RESULT( 1 ) = RES( 1 ) * * Do Test (2) * CALL SGET22( 'T', 'N', 'T', N, A, LDA, VL, LDVL, WR, WI, $ WORK, RES ) RESULT( 2 ) = RES( 1 ) * * Do Test (3) * DO 120 J = 1, N TNRM = ONE IF( WI( J ).EQ.ZERO ) THEN TNRM = SNRM2( N, VR( 1, J ), 1 ) ELSE IF( WI( J ).GT.ZERO ) THEN TNRM = SLAPY2( SNRM2( N, VR( 1, J ), 1 ), $ SNRM2( N, VR( 1, J+1 ), 1 ) ) END IF RESULT( 3 ) = MAX( RESULT( 3 ), $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) ) IF( WI( J ).GT.ZERO ) THEN VMX = ZERO VRMX = ZERO DO 110 JJ = 1, N VTST = SLAPY2( VR( JJ, J ), VR( JJ, J+1 ) ) IF( VTST.GT.VMX ) $ VMX = VTST IF( VR( JJ, J+1 ).EQ.ZERO .AND. $ ABS( VR( JJ, J ) ).GT.VRMX ) $ VRMX = ABS( VR( JJ, J ) ) 110 CONTINUE IF( VRMX / VMX.LT.ONE-TWO*ULP ) $ RESULT( 3 ) = ULPINV END IF 120 CONTINUE * * Do Test (4) * DO 140 J = 1, N TNRM = ONE IF( WI( J ).EQ.ZERO ) THEN TNRM = SNRM2( N, VL( 1, J ), 1 ) ELSE IF( WI( J ).GT.ZERO ) THEN TNRM = SLAPY2( SNRM2( N, VL( 1, J ), 1 ), $ SNRM2( N, VL( 1, J+1 ), 1 ) ) END IF RESULT( 4 ) = MAX( RESULT( 4 ), $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) ) IF( WI( J ).GT.ZERO ) THEN VMX = ZERO VRMX = ZERO DO 130 JJ = 1, N VTST = SLAPY2( VL( JJ, J ), VL( JJ, J+1 ) ) IF( VTST.GT.VMX ) $ VMX = VTST IF( VL( JJ, J+1 ).EQ.ZERO .AND. $ ABS( VL( JJ, J ) ).GT.VRMX ) $ VRMX = ABS( VL( JJ, J ) ) 130 CONTINUE IF( VRMX / VMX.LT.ONE-TWO*ULP ) $ RESULT( 4 ) = ULPINV END IF 140 CONTINUE * * Compute eigenvalues only, and test them * CALL SLACPY( 'F', N, N, A, LDA, H, LDA ) CALL SGEEV( 'N', 'N', N, H, LDA, WR1, WI1, DUM, 1, DUM, $ 1, WORK, NNWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUNIT, FMT = 9993 )'SGEEV2', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 220 END IF * * Do Test (5) * DO 150 J = 1, N IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) ) $ RESULT( 5 ) = ULPINV 150 CONTINUE * * Compute eigenvalues and right eigenvectors, and test them * CALL SLACPY( 'F', N, N, A, LDA, H, LDA ) CALL SGEEV( 'N', 'V', N, H, LDA, WR1, WI1, DUM, 1, LRE, $ LDLRE, WORK, NNWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUNIT, FMT = 9993 )'SGEEV3', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 220 END IF * * Do Test (5) again * DO 160 J = 1, N IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) ) $ RESULT( 5 ) = ULPINV 160 CONTINUE * * Do Test (6) * DO 180 J = 1, N DO 170 JJ = 1, N IF( VR( J, JJ ).NE.LRE( J, JJ ) ) $ RESULT( 6 ) = ULPINV 170 CONTINUE 180 CONTINUE * * Compute eigenvalues and left eigenvectors, and test them * CALL SLACPY( 'F', N, N, A, LDA, H, LDA ) CALL SGEEV( 'V', 'N', N, H, LDA, WR1, WI1, LRE, LDLRE, $ DUM, 1, WORK, NNWORK, IINFO ) IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUNIT, FMT = 9993 )'SGEEV4', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 220 END IF * * Do Test (5) again * DO 190 J = 1, N IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) ) $ RESULT( 5 ) = ULPINV 190 CONTINUE * * Do Test (7) * DO 210 J = 1, N DO 200 JJ = 1, N IF( VL( J, JJ ).NE.LRE( J, JJ ) ) $ RESULT( 7 ) = ULPINV 200 CONTINUE 210 CONTINUE * * End of Loop -- Check for RESULT(j) > THRESH * 220 CONTINUE * NTEST = 0 NFAIL = 0 DO 230 J = 1, 7 IF( RESULT( J ).GE.ZERO ) $ NTEST = NTEST + 1 IF( RESULT( J ).GE.THRESH ) $ NFAIL = NFAIL + 1 230 CONTINUE * IF( NFAIL.GT.0 ) $ NTESTF = NTESTF + 1 IF( NTESTF.EQ.1 ) THEN WRITE( NOUNIT, FMT = 9999 )PATH WRITE( NOUNIT, FMT = 9998 ) WRITE( NOUNIT, FMT = 9997 ) WRITE( NOUNIT, FMT = 9996 ) WRITE( NOUNIT, FMT = 9995 )THRESH NTESTF = 2 END IF * DO 240 J = 1, 7 IF( RESULT( J ).GE.THRESH ) THEN WRITE( NOUNIT, FMT = 9994 )N, IWK, IOLDSD, JTYPE, $ J, RESULT( J ) END IF 240 CONTINUE * NERRS = NERRS + NFAIL NTESTT = NTESTT + NTEST * 250 CONTINUE 260 CONTINUE 270 CONTINUE * * Summary * CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT ) * 9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition', $ ' Driver', / ' Matrix types (see SDRVEV for details): ' ) * 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', $ ' ', ' 5=Diagonal: geometr. spaced entries.', $ / ' 2=Identity matrix. ', ' 6=Diagona', $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ', $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ', $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s', $ 'mall, evenly spaced.' ) 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev', $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e', $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ', $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond', $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp', $ 'lex ', / ' 12=Well-cond., random complex ', 6X, ' ', $ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi', $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.', $ ' complx ' ) 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ', $ 'with small random entries.', / ' 20=Matrix with large ran', $ 'dom entries. ', / ) 9995 FORMAT( ' Tests performed with test threshold =', F8.2, $ / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ', $ / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ', $ / ' 3 = | |VR(i)| - 1 | / ulp ', $ / ' 4 = | |VL(i)| - 1 | / ulp ', $ / ' 5 = 0 if W same no matter if VR or VL computed,', $ ' 1/ulp otherwise', / $ ' 6 = 0 if VR same no matter if VL computed,', $ ' 1/ulp otherwise', / $ ' 7 = 0 if VL same no matter if VR computed,', $ ' 1/ulp otherwise', / ) 9994 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ), $ ' type ', I2, ', test(', I2, ')=', G10.3 ) 9993 FORMAT( ' SDRVEV: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * RETURN * * End of SDRVEV * END