numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/sdrvsg2stg.f | 49097B | -rw-r--r-- |
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
*> \brief \b SDRVSG2STG * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB, * BB, AP, BP, WORK, NWORK, IWORK, LIWORK, * RESULT, INFO ) * * IMPLICIT NONE * .. Scalar Arguments .. * INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES, * $ NTYPES, NWORK * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * REAL A( LDA, * ), AB( LDA, * ), AP( * ), * $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ), * $ RESULT( * ), WORK( * ), Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SDRVSG2STG checks the real symmetric generalized eigenproblem *> drivers. *> *> SSYGV computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite generalized *> eigenproblem. *> *> SSYGVD computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite generalized *> eigenproblem using a divide and conquer algorithm. *> *> SSYGVX computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite generalized *> eigenproblem. *> *> SSPGV computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite generalized *> eigenproblem in packed storage. *> *> SSPGVD computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite generalized *> eigenproblem in packed storage using a divide and *> conquer algorithm. *> *> SSPGVX computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite generalized *> eigenproblem in packed storage. *> *> SSBGV computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite banded *> generalized eigenproblem. *> *> SSBGVD computes all eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite banded *> generalized eigenproblem using a divide and conquer *> algorithm. *> *> SSBGVX computes selected eigenvalues and, optionally, *> eigenvectors of a real symmetric-definite banded *> generalized eigenproblem. *> *> When SDRVSG2STG is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix A of the given type will be *> generated; a random well-conditioned matrix B is also generated *> and the pair (A,B) is used to test the drivers. *> *> For each pair (A,B), the following tests are performed: *> *> (1) SSYGV with ITYPE = 1 and UPLO ='U': *> *> | A Z - B Z D | / ( |A| |Z| n ulp ) *> | D - D2 | / ( |D| ulp ) where D is computed by *> SSYGV and D2 is computed by *> SSYGV_2STAGE. This test is *> only performed for SSYGV *> *> (2) as (1) but calling SSPGV *> (3) as (1) but calling SSBGV *> (4) as (1) but with UPLO = 'L' *> (5) as (4) but calling SSPGV *> (6) as (4) but calling SSBGV *> *> (7) SSYGV with ITYPE = 2 and UPLO ='U': *> *> | A B Z - Z D | / ( |A| |Z| n ulp ) *> *> (8) as (7) but calling SSPGV *> (9) as (7) but with UPLO = 'L' *> (10) as (9) but calling SSPGV *> *> (11) SSYGV with ITYPE = 3 and UPLO ='U': *> *> | B A Z - Z D | / ( |A| |Z| n ulp ) *> *> (12) as (11) but calling SSPGV *> (13) as (11) but with UPLO = 'L' *> (14) as (13) but calling SSPGV *> *> SSYGVD, SSPGVD and SSBGVD performed the same 14 tests. *> *> SSYGVX, SSPGVX and SSBGVX performed the above 14 tests with *> the parameter RANGE = 'A', 'N' and 'I', respectively. *> *> The "sizes" are specified by an array NN(1:NSIZES); the value *> of each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> This type is used for the matrix A which has half-bandwidth KA. *> B is generated as a well-conditioned positive definite matrix *> with half-bandwidth KB (<= KA). *> Currently, the list of possible types for A is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> *> (3) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (4) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random signs. *> (5) A diagonal matrix with "clustered" entries *> 1, ULP, ..., ULP and random signs. *> *> (6) Same as (4), but multiplied by SQRT( overflow threshold ) *> (7) Same as (4), but multiplied by SQRT( underflow threshold ) *> *> (8) A matrix of the form U* D U, where U is orthogonal and *> D has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal. *> *> (9) A matrix of the form U* D U, where U is orthogonal and *> D has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal. *> *> (10) A matrix of the form U* D U, where U is orthogonal and *> D has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal. *> *> (11) Same as (8), but multiplied by SQRT( overflow threshold ) *> (12) Same as (8), but multiplied by SQRT( underflow threshold ) *> *> (13) symmetric matrix with random entries chosen from (-1,1). *> (14) Same as (13), but multiplied by SQRT( overflow threshold ) *> (15) Same as (13), but multiplied by SQRT( underflow threshold) *> *> (16) Same as (8), but with KA = 1 and KB = 1 *> (17) Same as (8), but with KA = 2 and KB = 1 *> (18) Same as (8), but with KA = 2 and KB = 2 *> (19) Same as (8), but with KA = 3 and KB = 1 *> (20) Same as (8), but with KA = 3 and KB = 2 *> (21) Same as (8), but with KA = 3 and KB = 3 *> \endverbatim * * Arguments: * ========== * *> \verbatim *> NSIZES INTEGER *> The number of sizes of matrices to use. If it is zero, *> SDRVSG2STG does nothing. It must be at least zero. *> Not modified. *> *> NN INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> Not modified. *> *> NTYPES INTEGER *> The number of elements in DOTYPE. If it is zero, SDRVSG2STG *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> Not modified. *> *> DOTYPE LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> Not modified. *> *> ISEED INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to SDRVSG2STG to continue the same random number *> sequence. *> Modified. *> *> THRESH REAL *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. real) *> or the size of the matrix. It must be at least zero. *> Not modified. *> *> NOUNIT INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> Not modified. *> *> A REAL array, dimension (LDA , max(NN)) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually *> used. *> Modified. *> *> LDA INTEGER *> The leading dimension of A and AB. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> B REAL array, dimension (LDB , max(NN)) *> Used to hold the symmetric positive definite matrix for *> the generalized problem. *> On exit, B contains the last matrix actually *> used. *> Modified. *> *> LDB INTEGER *> The leading dimension of B and BB. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> D REAL array, dimension (max(NN)) *> The eigenvalues of A. On exit, the eigenvalues in D *> correspond with the matrix in A. *> Modified. *> *> Z REAL array, dimension (LDZ, max(NN)) *> The matrix of eigenvectors. *> Modified. *> *> LDZ INTEGER *> The leading dimension of Z. It must be at least 1 and *> at least max( NN ). *> Not modified. *> *> AB REAL array, dimension (LDA, max(NN)) *> Workspace. *> Modified. *> *> BB REAL array, dimension (LDB, max(NN)) *> Workspace. *> Modified. *> *> AP REAL array, dimension (max(NN)**2) *> Workspace. *> Modified. *> *> BP REAL array, dimension (max(NN)**2) *> Workspace. *> Modified. *> *> WORK REAL array, dimension (NWORK) *> Workspace. *> Modified. *> *> NWORK INTEGER *> The number of entries in WORK. This must be at least *> 1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and *> lg( N ) = smallest integer k such that 2**k >= N. *> Not modified. *> *> IWORK INTEGER array, dimension (LIWORK) *> Workspace. *> Modified. *> *> LIWORK INTEGER *> The number of entries in WORK. This must be at least 6*N. *> Not modified. *> *> RESULT REAL array, dimension (70) *> The values computed by the 70 tests described above. *> Modified. *> *> INFO INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some NN(j) < 0 *> -3: NTYPES < 0 *> -5: THRESH < 0 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). *> -16: LDZ < 1 or LDZ < NMAX. *> -21: NWORK too small. *> -23: LIWORK too small. *> If SLATMR, SLATMS, SSYGV, SSPGV, SSBGV, SSYGVD, SSPGVD, *> SSBGVD, SSYGVX, SSPGVX or SSBGVX returns an error code, *> the absolute value of it is returned. *> Modified. *> *> ---------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NTEST The number of tests that have been run *> on this matrix. *> NTESTT The total number of tests for this call. *> NMAX Largest value in NN. *> NMATS The number of matrices generated so far. *> NERRS The number of tests which have exceeded THRESH *> so far (computed by SLAFTS). *> COND, IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTOVFL, RTUNFL Square roots of the previous 2 values. *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup real_eig * * ===================================================================== SUBROUTINE SDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB, $ BB, AP, BP, WORK, NWORK, IWORK, LIWORK, $ RESULT, INFO ) * IMPLICIT NONE * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES, $ NTYPES, NWORK REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) REAL A( LDA, * ), AB( LDA, * ), AP( * ), $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ), $ D2( * ), RESULT( * ), WORK( * ), Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TEN PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TEN = 10.0E0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) * .. * .. Local Scalars .. LOGICAL BADNN CHARACTER UPLO INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP, $ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB, $ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST, $ NTESTT REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL, $ RTUNFL, ULP, ULPINV, UNFL, VL, VU, TEMP1, TEMP2 * .. * .. Local Arrays .. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLARND EXTERNAL LSAME, SLAMCH, SLARND * .. * .. External Subroutines .. EXTERNAL SLACPY, SLAFTS, SLASET, SLASUM, SLATMR, $ SLATMS, SSBGV, SSBGVD, SSBGVX, SSGT01, SSPGV, $ SSPGVD, SSPGVX, SSYGV, SSYGVD, SSYGVX, XERBLA, $ SSYGV_2STAGE * .. * .. Intrinsic Functions .. INTRINSIC ABS, REAL, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 / DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, $ 2, 3, 6*1 / DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0, $ 0, 0, 6*4 / * .. * .. Executable Statements .. * * 1) Check for errors * NTESTT = 0 INFO = 0 * BADNN = .FALSE. NMAX = 0 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN INFO = -16 ELSE IF( 2*MAX( NMAX, 3 )**2.GT.NWORK ) THEN INFO = -21 ELSE IF( 2*MAX( NMAX, 3 )**2.GT.LIWORK ) THEN INFO = -23 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SDRVSG2STG', -INFO ) RETURN END IF * * Quick return if possible * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More Important constants * UNFL = SLAMCH( 'Safe minimum' ) OVFL = SLAMCH( 'Overflow' ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) ULPINV = ONE / ULP RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) * DO 20 I = 1, 4 ISEED2( I ) = ISEED( I ) 20 CONTINUE * * Loop over sizes, types * NERRS = 0 NMATS = 0 * DO 650 JSIZE = 1, NSIZES N = NN( JSIZE ) ANINV = ONE / REAL( MAX( 1, N ) ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * KA9 = 0 KB9 = 0 DO 640 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 640 NMATS = NMATS + 1 NTEST = 0 * DO 30 J = 1, 4 IOLDSD( J ) = ISEED( J ) 30 CONTINUE * * 2) Compute "A" * * Control parameters: * * KMAGN KMODE KTYPE * =1 O(1) clustered 1 zero * =2 large clustered 2 identity * =3 small exponential (none) * =4 arithmetic diagonal, w/ eigenvalues * =5 random log hermitian, w/ eigenvalues * =6 random (none) * =7 random diagonal * =8 random hermitian * =9 banded, w/ eigenvalues * IF( MTYPES.GT.MAXTYP ) $ GO TO 90 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*ANINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*N*ULPINV GO TO 70 * 70 CONTINUE * IINFO = 0 COND = ULPINV * * Special Matrices -- Identity & Jordan block * IF( ITYPE.EQ.1 ) THEN * * Zero * KA = 0 KB = 0 CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * KA = 0 KB = 0 CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * KA = 0 KB = 0 CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * symmetric, eigenvalues specified * KA = MAX( 0, N-1 ) KB = KA CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * KA = 0 KB = 0 CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * symmetric, random eigenvalues * KA = MAX( 0, N-1 ) KB = KA CALL SLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * symmetric banded, eigenvalues specified * * The following values are used for the half-bandwidths: * * ka = 1 kb = 1 * ka = 2 kb = 1 * ka = 2 kb = 2 * ka = 3 kb = 1 * ka = 3 kb = 2 * ka = 3 kb = 3 * KB9 = KB9 + 1 IF( KB9.GT.KA9 ) THEN KA9 = KA9 + 1 KB9 = 1 END IF KA = MAX( 0, MIN( N-1, KA9 ) ) KB = MAX( 0, MIN( N-1, KB9 ) ) CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, KA, KA, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 90 CONTINUE * ABSTOL = UNFL + UNFL IF( N.LE.1 ) THEN IL = 1 IU = N ELSE IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) ) IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) ) IF( IL.GT.IU ) THEN ITEMP = IL IL = IU IU = ITEMP END IF END IF * * 3) Call SSYGV, SSPGV, SSBGV, SSYGVD, SSPGVD, SSBGVD, * SSYGVX, SSPGVX, and SSBGVX, do tests. * * loop over the three generalized problems * IBTYPE = 1: A*x = (lambda)*B*x * IBTYPE = 2: A*B*x = (lambda)*x * IBTYPE = 3: B*A*x = (lambda)*x * DO 630 IBTYPE = 1, 3 * * loop over the setting UPLO * DO 620 IBUPLO = 1, 2 IF( IBUPLO.EQ.1 ) $ UPLO = 'U' IF( IBUPLO.EQ.2 ) $ UPLO = 'L' * * Generate random well-conditioned positive definite * matrix B, of bandwidth not greater than that of A. * CALL SLATMS( N, N, 'U', ISEED, 'P', WORK, 5, TEN, ONE, $ KB, KB, UPLO, B, LDB, WORK( N+1 ), $ IINFO ) * * Test SSYGV * NTEST = NTEST + 1 * CALL SLACPY( ' ', N, N, A, LDA, Z, LDZ ) CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL SSYGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D, $ WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYGV(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test SSYGV_2STAGE * NTEST = NTEST + 1 * CALL SLACPY( ' ', N, N, A, LDA, Z, LDZ ) CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL SSYGV_2STAGE( IBTYPE, 'N', UPLO, N, Z, LDZ, $ BB, LDB, D2, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 ) $ 'SSYGV_2STAGE(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * C CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, C $ LDZ, D, WORK, RESULT( NTEST ) ) * * * Do Tests | D1 - D2 | / ( |D1| ulp ) * D1 computed using the standard 1-stage reduction as reference * D2 computed using the 2-stage reduction * TEMP1 = ZERO TEMP2 = ZERO DO 151 J = 1, N TEMP1 = MAX( TEMP1, ABS( D( J ) ), $ ABS( D2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D( J )-D2( J ) ) ) 151 CONTINUE * RESULT( NTEST ) = TEMP2 / $ MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) ) * * Test SSYGVD * NTEST = NTEST + 1 * CALL SLACPY( ' ', N, N, A, LDA, Z, LDZ ) CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL SSYGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D, $ WORK, NWORK, IWORK, LIWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYGVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test SSYGVX * NTEST = NTEST + 1 * CALL SLACPY( ' ', N, N, A, LDA, AB, LDA ) CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL SSYGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB, $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z, $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYGVX(V,A' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * CALL SLACPY( ' ', N, N, A, LDA, AB, LDA ) CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB ) * * since we do not know the exact eigenvalues of this * eigenpair, we just set VL and VU as constants. * It is quite possible that there are no eigenvalues * in this interval. * VL = ZERO VU = ANORM CALL SSYGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB, $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z, $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYGVX(V,V,' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * CALL SLACPY( ' ', N, N, A, LDA, AB, LDA ) CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL SSYGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB, $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z, $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSYGVX(V,I,' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * 100 CONTINUE * * Test SSPGV * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 120 J = 1, N DO 110 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 110 CONTINUE 120 CONTINUE ELSE IJ = 1 DO 140 J = 1, N DO 130 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 130 CONTINUE 140 CONTINUE END IF * CALL SSPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ, $ WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPGV(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test SSPGVD * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 160 J = 1, N DO 150 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 150 CONTINUE 160 CONTINUE ELSE IJ = 1 DO 180 J = 1, N DO 170 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 170 CONTINUE 180 CONTINUE END IF * CALL SSPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ, $ WORK, NWORK, IWORK, LIWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPGVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test SSPGVX * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 200 J = 1, N DO 190 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 190 CONTINUE 200 CONTINUE ELSE IJ = 1 DO 220 J = 1, N DO 210 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 210 CONTINUE 220 CONTINUE END IF * CALL SSPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL, $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, INFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPGVX(V,A' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 240 J = 1, N DO 230 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 230 CONTINUE 240 CONTINUE ELSE IJ = 1 DO 260 J = 1, N DO 250 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 250 CONTINUE 260 CONTINUE END IF * VL = ZERO VU = ANORM CALL SSPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL, $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, INFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPGVX(V,V' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 280 J = 1, N DO 270 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 270 CONTINUE 280 CONTINUE ELSE IJ = 1 DO 300 J = 1, N DO 290 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 290 CONTINUE 300 CONTINUE END IF * CALL SSPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL, $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, INFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSPGVX(V,I' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * 310 CONTINUE * IF( IBTYPE.EQ.1 ) THEN * * TEST SSBGV * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 340 J = 1, N DO 320 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 320 CONTINUE DO 330 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 330 CONTINUE 340 CONTINUE ELSE DO 370 J = 1, N DO 350 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 350 CONTINUE DO 360 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 360 CONTINUE 370 CONTINUE END IF * CALL SSBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB, $ D, Z, LDZ, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBGV(V,' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * TEST SSBGVD * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 400 J = 1, N DO 380 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 380 CONTINUE DO 390 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 390 CONTINUE 400 CONTINUE ELSE DO 430 J = 1, N DO 410 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 410 CONTINUE DO 420 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 420 CONTINUE 430 CONTINUE END IF * CALL SSBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB, $ LDB, D, Z, LDZ, WORK, NWORK, IWORK, $ LIWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBGVD(V,' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test SSBGVX * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 460 J = 1, N DO 440 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 440 CONTINUE DO 450 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 450 CONTINUE 460 CONTINUE ELSE DO 490 J = 1, N DO 470 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 470 CONTINUE DO 480 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 480 CONTINUE 490 CONTINUE END IF * CALL SSBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA, $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL, $ IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBGVX(V,A' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 520 J = 1, N DO 500 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 500 CONTINUE DO 510 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 510 CONTINUE 520 CONTINUE ELSE DO 550 J = 1, N DO 530 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 530 CONTINUE DO 540 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 540 CONTINUE 550 CONTINUE END IF * VL = ZERO VU = ANORM CALL SSBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA, $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL, $ IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBGVX(V,V' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 580 J = 1, N DO 560 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 560 CONTINUE DO 570 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 570 CONTINUE 580 CONTINUE ELSE DO 610 J = 1, N DO 590 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 590 CONTINUE DO 600 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 600 CONTINUE 610 CONTINUE END IF * CALL SSBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA, $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL, $ IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'SSBGVX(V,I' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * END IF * 620 CONTINUE 630 CONTINUE * * End of Loop -- Check for RESULT(j) > THRESH * NTESTT = NTESTT + NTEST CALL SLAFTS( 'SSG', N, N, JTYPE, NTEST, RESULT, IOLDSD, $ THRESH, NOUNIT, NERRS ) 640 CONTINUE 650 CONTINUE * * Summary * CALL SLASUM( 'SSG', NOUNIT, NERRS, NTESTT ) * RETURN * * End of SDRVSG2STG * 9999 FORMAT( ' SDRVSG2STG: ', A, ' returned INFO=', I6, '.', / 9X, $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) END