numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/sdrvvx.f | 35803B | -rw-r--r-- |
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
*> \brief \b SDRVVX * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1, * VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1, * RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, * RESULT, WORK, NWORK, IWORK, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT, * $ NSIZES, NTYPES, NWORK * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ), * $ RCDEIN( * ), RCDVIN( * ), RCNDE1( * ), * $ RCNDV1( * ), RCONDE( * ), RCONDV( * ), * $ RESULT( 11 ), SCALE( * ), SCALE1( * ), * $ VL( LDVL, * ), VR( LDVR, * ), WI( * ), * $ WI1( * ), WORK( * ), WR( * ), WR1( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SDRVVX checks the nonsymmetric eigenvalue problem expert driver *> SGEEVX. *> *> SDRVVX uses both test matrices generated randomly depending on *> data supplied in the calling sequence, as well as on data *> read from an input file and including precomputed condition *> numbers to which it compares the ones it computes. *> *> When SDRVVX is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified in the calling sequence. *> For each size ("n") and each type of matrix, one matrix will be *> generated and used to test the nonsymmetric eigenroutines. For *> each matrix, 9 tests will be performed: *> *> (1) | A * VR - VR * W | / ( n |A| ulp ) *> *> Here VR is the matrix of unit right eigenvectors. *> W is a block diagonal matrix, with a 1x1 block for each *> real eigenvalue and a 2x2 block for each complex conjugate *> pair. If eigenvalues j and j+1 are a complex conjugate pair, *> so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the *> 2 x 2 block corresponding to the pair will be: *> *> ( wr wi ) *> ( -wi wr ) *> *> Such a block multiplying an n x 2 matrix ( ur ui ) on the *> right will be the same as multiplying ur + i*ui by wr + i*wi. *> *> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) *> *> Here VL is the matrix of unit left eigenvectors, A**H is the *> conjugate transpose of A, and W is as above. *> *> (3) | |VR(i)| - 1 | / ulp and largest component real *> *> VR(i) denotes the i-th column of VR. *> *> (4) | |VL(i)| - 1 | / ulp and largest component real *> *> VL(i) denotes the i-th column of VL. *> *> (5) W(full) = W(partial) *> *> W(full) denotes the eigenvalues computed when VR, VL, RCONDV *> and RCONDE are also computed, and W(partial) denotes the *> eigenvalues computed when only some of VR, VL, RCONDV, and *> RCONDE are computed. *> *> (6) VR(full) = VR(partial) *> *> VR(full) denotes the right eigenvectors computed when VL, RCONDV *> and RCONDE are computed, and VR(partial) denotes the result *> when only some of VL and RCONDV are computed. *> *> (7) VL(full) = VL(partial) *> *> VL(full) denotes the left eigenvectors computed when VR, RCONDV *> and RCONDE are computed, and VL(partial) denotes the result *> when only some of VR and RCONDV are computed. *> *> (8) 0 if SCALE, ILO, IHI, ABNRM (full) = *> SCALE, ILO, IHI, ABNRM (partial) *> 1/ulp otherwise *> *> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. *> (full) is when VR, VL, RCONDE and RCONDV are also computed, and *> (partial) is when some are not computed. *> *> (9) RCONDV(full) = RCONDV(partial) *> *> RCONDV(full) denotes the reciprocal condition numbers of the *> right eigenvectors computed when VR, VL and RCONDE are also *> computed. RCONDV(partial) denotes the reciprocal condition *> numbers when only some of VR, VL and RCONDE are computed. *> *> The "sizes" are specified by an array NN(1:NSIZES); the value of *> each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> (3) A (transposed) Jordan block, with 1's on the diagonal. *> *> (4) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (5) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random signs. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random signs. *> *> (7) Same as (4), but multiplied by a constant near *> the overflow threshold *> (8) Same as (4), but multiplied by a constant near *> the underflow threshold *> *> (9) A matrix of the form U' T U, where U is orthogonal and *> T has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal and random O(1) entries in the upper *> triangle. *> *> (10) A matrix of the form U' T U, where U is orthogonal and *> T has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal and random O(1) entries in the upper *> triangle. *> *> (11) A matrix of the form U' T U, where U is orthogonal and *> T has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal and random O(1) entries in the upper *> triangle. *> *> (12) A matrix of the form U' T U, where U is orthogonal and *> T has real or complex conjugate paired eigenvalues randomly *> chosen from ( ULP, 1 ) and random O(1) entries in the upper *> triangle. *> *> (13) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP *> with random signs on the diagonal and random O(1) entries *> in the upper triangle. *> *> (14) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has geometrically spaced entries *> 1, ..., ULP with random signs on the diagonal and random *> O(1) entries in the upper triangle. *> *> (15) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP *> with random signs on the diagonal and random O(1) entries *> in the upper triangle. *> *> (16) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has real or complex conjugate paired *> eigenvalues randomly chosen from ( ULP, 1 ) and random *> O(1) entries in the upper triangle. *> *> (17) Same as (16), but multiplied by a constant *> near the overflow threshold *> (18) Same as (16), but multiplied by a constant *> near the underflow threshold *> *> (19) Nonsymmetric matrix with random entries chosen from (-1,1). *> If N is at least 4, all entries in first two rows and last *> row, and first column and last two columns are zero. *> (20) Same as (19), but multiplied by a constant *> near the overflow threshold *> (21) Same as (19), but multiplied by a constant *> near the underflow threshold *> *> In addition, an input file will be read from logical unit number *> NIUNIT. The file contains matrices along with precomputed *> eigenvalues and reciprocal condition numbers for the eigenvalues *> and right eigenvectors. For these matrices, in addition to tests *> (1) to (9) we will compute the following two tests: *> *> (10) |RCONDV - RCDVIN| / cond(RCONDV) *> *> RCONDV is the reciprocal right eigenvector condition number *> computed by SGEEVX and RCDVIN (the precomputed true value) *> is supplied as input. cond(RCONDV) is the condition number of *> RCONDV, and takes errors in computing RCONDV into account, so *> that the resulting quantity should be O(ULP). cond(RCONDV) is *> essentially given by norm(A)/RCONDE. *> *> (11) |RCONDE - RCDEIN| / cond(RCONDE) *> *> RCONDE is the reciprocal eigenvalue condition number *> computed by SGEEVX and RCDEIN (the precomputed true value) *> is supplied as input. cond(RCONDE) is the condition number *> of RCONDE, and takes errors in computing RCONDE into account, *> so that the resulting quantity should be O(ULP). cond(RCONDE) *> is essentially given by norm(A)/RCONDV. *> \endverbatim * * Arguments: * ========== * *> \param[in] NSIZES *> \verbatim *> NSIZES is INTEGER *> The number of sizes of matrices to use. NSIZES must be at *> least zero. If it is zero, no randomly generated matrices *> are tested, but any test matrices read from NIUNIT will be *> tested. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> \endverbatim *> *> \param[in] NTYPES *> \verbatim *> NTYPES is INTEGER *> The number of elements in DOTYPE. NTYPES must be at least *> zero. If it is zero, no randomly generated test matrices *> are tested, but and test matrices read from NIUNIT will be *> tested. If it is MAXTYP+1 and NSIZES is 1, then an *> additional type, MAXTYP+1 is defined, which is to use *> whatever matrix is in A. This is only useful if *> DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . *> \endverbatim *> *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to SDRVVX to continue the same random number *> sequence. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] NIUNIT *> \verbatim *> NIUNIT is INTEGER *> The FORTRAN unit number for reading in the data file of *> problems to solve. *> \endverbatim *> *> \param[in] NOUNIT *> \verbatim *> NOUNIT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns INFO not equal to 0.) *> \endverbatim *> *> \param[out] A *> \verbatim *> A is REAL array, dimension *> (LDA, max(NN,12)) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually used. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the arrays A and H. *> LDA >= max(NN,12), since 12 is the dimension of the largest *> matrix in the precomputed input file. *> \endverbatim *> *> \param[out] H *> \verbatim *> H is REAL array, dimension *> (LDA, max(NN,12)) *> Another copy of the test matrix A, modified by SGEEVX. *> \endverbatim *> *> \param[out] WR *> \verbatim *> WR is REAL array, dimension (max(NN)) *> \endverbatim *> *> \param[out] WI *> \verbatim *> WI is REAL array, dimension (max(NN)) *> The real and imaginary parts of the eigenvalues of A. *> On exit, WR + WI*i are the eigenvalues of the matrix in A. *> \endverbatim *> *> \param[out] WR1 *> \verbatim *> WR1 is REAL array, dimension (max(NN,12)) *> \endverbatim *> *> \param[out] WI1 *> \verbatim *> WI1 is REAL array, dimension (max(NN,12)) *> *> Like WR, WI, these arrays contain the eigenvalues of A, *> but those computed when SGEEVX only computes a partial *> eigendecomposition, i.e. not the eigenvalues and left *> and right eigenvectors. *> \endverbatim *> *> \param[out] VL *> \verbatim *> VL is REAL array, dimension *> (LDVL, max(NN,12)) *> VL holds the computed left eigenvectors. *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> Leading dimension of VL. Must be at least max(1,max(NN,12)). *> \endverbatim *> *> \param[out] VR *> \verbatim *> VR is REAL array, dimension *> (LDVR, max(NN,12)) *> VR holds the computed right eigenvectors. *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> Leading dimension of VR. Must be at least max(1,max(NN,12)). *> \endverbatim *> *> \param[out] LRE *> \verbatim *> LRE is REAL array, dimension *> (LDLRE, max(NN,12)) *> LRE holds the computed right or left eigenvectors. *> \endverbatim *> *> \param[in] LDLRE *> \verbatim *> LDLRE is INTEGER *> Leading dimension of LRE. Must be at least max(1,max(NN,12)) *> \endverbatim *> *> \param[out] RCONDV *> \verbatim *> RCONDV is REAL array, dimension (N) *> RCONDV holds the computed reciprocal condition numbers *> for eigenvectors. *> \endverbatim *> *> \param[out] RCNDV1 *> \verbatim *> RCNDV1 is REAL array, dimension (N) *> RCNDV1 holds more computed reciprocal condition numbers *> for eigenvectors. *> \endverbatim *> *> \param[out] RCDVIN *> \verbatim *> RCDVIN is REAL array, dimension (N) *> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal *> condition numbers for eigenvectors to be compared with *> RCONDV. *> \endverbatim *> *> \param[out] RCONDE *> \verbatim *> RCONDE is REAL array, dimension (N) *> RCONDE holds the computed reciprocal condition numbers *> for eigenvalues. *> \endverbatim *> *> \param[out] RCNDE1 *> \verbatim *> RCNDE1 is REAL array, dimension (N) *> RCNDE1 holds more computed reciprocal condition numbers *> for eigenvalues. *> \endverbatim *> *> \param[out] RCDEIN *> \verbatim *> RCDEIN is REAL array, dimension (N) *> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal *> condition numbers for eigenvalues to be compared with *> RCONDE. *> \endverbatim *> *> \param[out] SCALE *> \verbatim *> SCALE is REAL array, dimension (N) *> Holds information describing balancing of matrix. *> \endverbatim *> *> \param[out] SCALE1 *> \verbatim *> SCALE1 is REAL array, dimension (N) *> Holds information describing balancing of matrix. *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (11) *> The values computed by the seven tests described above. *> The values are currently limited to 1/ulp, to avoid overflow. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (NWORK) *> \endverbatim *> *> \param[in] NWORK *> \verbatim *> NWORK is INTEGER *> The number of entries in WORK. This must be at least *> max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) = *> max( 360 ,6*NN(j)+2*NN(j)**2) for all j. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (2*max(NN,12)) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> If 0, then successful exit. *> If <0, then input parameter -INFO is incorrect. *> If >0, SLATMR, SLATMS, SLATME or SGET23 returned an error *> code, and INFO is its absolute value. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NMAX Largest value in NN or 12. *> NERRS The number of tests which have exceeded THRESH *> COND, CONDS, *> IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTULP, RTULPI Square roots of the previous 4 values. *> *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> KCONDS(j) Selectw whether CONDS is to be 1 or *> 1/sqrt(ulp). (0 means irrelevant.) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1, $ VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1, $ RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, $ RESULT, WORK, NWORK, IWORK, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT, $ NSIZES, NTYPES, NWORK REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ), $ RCDEIN( * ), RCDVIN( * ), RCNDE1( * ), $ RCNDV1( * ), RCONDE( * ), RCONDV( * ), $ RESULT( 11 ), SCALE( * ), SCALE1( * ), $ VL( LDVL, * ), VR( LDVR, * ), WI( * ), $ WI1( * ), WORK( * ), WR( * ), WR1( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) * .. * .. Local Scalars .. LOGICAL BADNN CHARACTER BALANC CHARACTER*3 PATH INTEGER I, IBAL, IINFO, IMODE, ITYPE, IWK, J, JCOL, $ JSIZE, JTYPE, MTYPES, N, NERRS, NFAIL, $ NMAX, NNWORK, NTEST, NTESTF, NTESTT REAL ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP, $ ULPINV, UNFL * .. * .. Local Arrays .. CHARACTER ADUMMA( 1 ), BAL( 4 ) INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL SGET23, SLASUM, SLATME, SLATMR, SLATMS, SLASET, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 / DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2, $ 3, 1, 2, 3 / DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3, $ 1, 5, 5, 5, 4, 3, 1 / DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 / DATA BAL / 'N', 'P', 'S', 'B' / * .. * .. Executable Statements .. * PATH( 1: 1 ) = 'Single precision' PATH( 2: 3 ) = 'VX' * * Check for errors * NTESTT = 0 NTESTF = 0 INFO = 0 * * Important constants * BADNN = .FALSE. * * 12 is the largest dimension in the input file of precomputed * problems * NMAX = 12 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -6 ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN INFO = -10 ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN INFO = -17 ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN INFO = -19 ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN INFO = -21 ELSE IF( 6*NMAX+2*NMAX**2.GT.NWORK ) THEN INFO = -32 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SDRVVX', -INFO ) RETURN END IF * * If nothing to do check on NIUNIT * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ GO TO 160 * * More Important constants * UNFL = SLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL ULP = SLAMCH( 'Precision' ) ULPINV = ONE / ULP RTULP = SQRT( ULP ) RTULPI = ONE / RTULP * * Loop over sizes, types * NERRS = 0 * DO 150 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 140 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 140 * * Save ISEED in case of an error. * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * * Compute "A" * * Control parameters: * * KMAGN KCONDS KMODE KTYPE * =1 O(1) 1 clustered 1 zero * =2 large large clustered 2 identity * =3 small exponential Jordan * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log symmetric, w/ eigenvalues * =6 random general, w/ eigenvalues * =7 random diagonal * =8 random symmetric * =9 random general * =10 random triangular * IF( MTYPES.GT.MAXTYP ) $ GO TO 90 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 30, 40, 50 )KMAGN( JTYPE ) * 30 CONTINUE ANORM = ONE GO TO 60 * 40 CONTINUE ANORM = OVFL*ULP GO TO 60 * 50 CONTINUE ANORM = UNFL*ULPINV GO TO 60 * 60 CONTINUE * CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) IINFO = 0 COND = ULPINV * * Special Matrices -- Identity & Jordan block * * Zero * IF( ITYPE.EQ.1 ) THEN IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 70 JCOL = 1, N A( JCOL, JCOL ) = ANORM 70 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * Jordan Block * DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM IF( JCOL.GT.1 ) $ A( JCOL, JCOL-1 ) = ONE 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Symmetric, eigenvalues specified * CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.6 ) THEN * * General, eigenvalues specified * IF( KCONDS( JTYPE ).EQ.1 ) THEN CONDS = ONE ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN CONDS = RTULPI ELSE CONDS = ZERO END IF * ADUMMA( 1 ) = ' ' CALL SLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE, $ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4, $ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Symmetric, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * General, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) IF( N.GE.4 ) THEN CALL SLASET( 'Full', 2, N, ZERO, ZERO, A, LDA ) CALL SLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ), $ LDA ) CALL SLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ), $ LDA ) CALL SLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ), $ LDA ) END IF * ELSE IF( ITYPE.EQ.10 ) THEN * * Triangular, random eigenvalues * CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 90 CONTINUE * * Test for minimal and generous workspace * DO 130 IWK = 1, 3 IF( IWK.EQ.1 ) THEN NNWORK = 3*N ELSE IF( IWK.EQ.2 ) THEN NNWORK = 6*N + N**2 ELSE NNWORK = 6*N + 2*N**2 END IF NNWORK = MAX( NNWORK, 1 ) * * Test for all balancing options * DO 120 IBAL = 1, 4 BALANC = BAL( IBAL ) * * Perform tests * CALL SGET23( .FALSE., BALANC, JTYPE, THRESH, IOLDSD, $ NOUNIT, N, A, LDA, H, WR, WI, WR1, WI1, $ VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, $ RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN, $ SCALE, SCALE1, RESULT, WORK, NNWORK, $ IWORK, INFO ) * * Check for RESULT(j) > THRESH * NTEST = 0 NFAIL = 0 DO 100 J = 1, 9 IF( RESULT( J ).GE.ZERO ) $ NTEST = NTEST + 1 IF( RESULT( J ).GE.THRESH ) $ NFAIL = NFAIL + 1 100 CONTINUE * IF( NFAIL.GT.0 ) $ NTESTF = NTESTF + 1 IF( NTESTF.EQ.1 ) THEN WRITE( NOUNIT, FMT = 9999 )PATH WRITE( NOUNIT, FMT = 9998 ) WRITE( NOUNIT, FMT = 9997 ) WRITE( NOUNIT, FMT = 9996 ) WRITE( NOUNIT, FMT = 9995 )THRESH NTESTF = 2 END IF * DO 110 J = 1, 9 IF( RESULT( J ).GE.THRESH ) THEN WRITE( NOUNIT, FMT = 9994 )BALANC, N, IWK, $ IOLDSD, JTYPE, J, RESULT( J ) END IF 110 CONTINUE * NERRS = NERRS + NFAIL NTESTT = NTESTT + NTEST * 120 CONTINUE 130 CONTINUE 140 CONTINUE 150 CONTINUE * 160 CONTINUE * * Read in data from file to check accuracy of condition estimation. * Assume input eigenvalues are sorted lexicographically (increasing * by real part, then decreasing by imaginary part) * JTYPE = 0 170 CONTINUE READ( NIUNIT, FMT = *, END = 220 )N * * Read input data until N=0 * IF( N.EQ.0 ) $ GO TO 220 JTYPE = JTYPE + 1 ISEED( 1 ) = JTYPE DO 180 I = 1, N READ( NIUNIT, FMT = * )( A( I, J ), J = 1, N ) 180 CONTINUE DO 190 I = 1, N READ( NIUNIT, FMT = * )WR1( I ), WI1( I ), RCDEIN( I ), $ RCDVIN( I ) 190 CONTINUE CALL SGET23( .TRUE., 'N', 22, THRESH, ISEED, NOUNIT, N, A, LDA, H, $ WR, WI, WR1, WI1, VL, LDVL, VR, LDVR, LRE, LDLRE, $ RCONDV, RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN, $ SCALE, SCALE1, RESULT, WORK, 6*N+2*N**2, IWORK, $ INFO ) * * Check for RESULT(j) > THRESH * NTEST = 0 NFAIL = 0 DO 200 J = 1, 11 IF( RESULT( J ).GE.ZERO ) $ NTEST = NTEST + 1 IF( RESULT( J ).GE.THRESH ) $ NFAIL = NFAIL + 1 200 CONTINUE * IF( NFAIL.GT.0 ) $ NTESTF = NTESTF + 1 IF( NTESTF.EQ.1 ) THEN WRITE( NOUNIT, FMT = 9999 )PATH WRITE( NOUNIT, FMT = 9998 ) WRITE( NOUNIT, FMT = 9997 ) WRITE( NOUNIT, FMT = 9996 ) WRITE( NOUNIT, FMT = 9995 )THRESH NTESTF = 2 END IF * DO 210 J = 1, 11 IF( RESULT( J ).GE.THRESH ) THEN WRITE( NOUNIT, FMT = 9993 )N, JTYPE, J, RESULT( J ) END IF 210 CONTINUE * NERRS = NERRS + NFAIL NTESTT = NTESTT + NTEST GO TO 170 220 CONTINUE * * Summary * CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT ) * 9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition', $ ' Expert Driver', / $ ' Matrix types (see SDRVVX for details): ' ) * 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', $ ' ', ' 5=Diagonal: geometr. spaced entries.', $ / ' 2=Identity matrix. ', ' 6=Diagona', $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ', $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ', $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s', $ 'mall, evenly spaced.' ) 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev', $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e', $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ', $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond', $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp', $ 'lex ', / ' 12=Well-cond., random complex ', ' ', $ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi', $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.', $ ' complx ' ) 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ', $ 'with small random entries.', / ' 20=Matrix with large ran', $ 'dom entries. ', ' 22=Matrix read from input file', / ) 9995 FORMAT( ' Tests performed with test threshold =', F8.2, $ / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ', $ / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ', $ / ' 3 = | |VR(i)| - 1 | / ulp ', $ / ' 4 = | |VL(i)| - 1 | / ulp ', $ / ' 5 = 0 if W same no matter if VR or VL computed,', $ ' 1/ulp otherwise', / $ ' 6 = 0 if VR same no matter what else computed,', $ ' 1/ulp otherwise', / $ ' 7 = 0 if VL same no matter what else computed,', $ ' 1/ulp otherwise', / $ ' 8 = 0 if RCONDV same no matter what else computed,', $ ' 1/ulp otherwise', / $ ' 9 = 0 if SCALE, ILO, IHI, ABNRM same no matter what else', $ ' computed, 1/ulp otherwise', $ / ' 10 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),', $ / ' 11 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),' ) 9994 FORMAT( ' BALANC=''', A1, ''',N=', I4, ',IWK=', I1, ', seed=', $ 4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 ) 9993 FORMAT( ' N=', I5, ', input example =', I3, ', test(', I2, ')=', $ G10.3 ) 9992 FORMAT( ' SDRVVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * RETURN * * End of SDRVVX * END