numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/sget34.f | 15784B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
*> \brief \b SGET34 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SGET34( RMAX, LMAX, NINFO, KNT ) * * .. Scalar Arguments .. * INTEGER KNT, LMAX * REAL RMAX * .. * .. Array Arguments .. * INTEGER NINFO( 2 ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SGET34 tests SLAEXC, a routine for swapping adjacent blocks (either *> 1 by 1 or 2 by 2) on the diagonal of a matrix in real Schur form. *> Thus, SLAEXC computes an orthogonal matrix Q such that *> *> Q' * [ A B ] * Q = [ C1 B1 ] *> [ 0 C ] [ 0 A1 ] *> *> where C1 is similar to C and A1 is similar to A. Both A and C are *> assumed to be in standard form (equal diagonal entries and *> offdiagonal with differing signs) and A1 and C1 are returned with the *> same properties. *> *> The test code verifies these last last assertions, as well as that *> the residual in the above equation is small. *> \endverbatim * * Arguments: * ========== * *> \param[out] RMAX *> \verbatim *> RMAX is REAL *> Value of the largest test ratio. *> \endverbatim *> *> \param[out] LMAX *> \verbatim *> LMAX is INTEGER *> Example number where largest test ratio achieved. *> \endverbatim *> *> \param[out] NINFO *> \verbatim *> NINFO is INTEGER array, dimension (2) *> NINFO(J) is the number of examples where INFO=J occurred. *> \endverbatim *> *> \param[out] KNT *> \verbatim *> KNT is INTEGER *> Total number of examples tested. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SGET34( RMAX, LMAX, NINFO, KNT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER KNT, LMAX REAL RMAX * .. * .. Array Arguments .. INTEGER NINFO( 2 ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, HALF, ONE PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0 ) REAL TWO, THREE PARAMETER ( TWO = 2.0E0, THREE = 3.0E0 ) INTEGER LWORK PARAMETER ( LWORK = 32 ) * .. * .. Local Scalars .. INTEGER I, IA, IA11, IA12, IA21, IA22, IAM, IB, IC, $ IC11, IC12, IC21, IC22, ICM, INFO, J REAL BIGNUM, EPS, RES, SMLNUM, TNRM * .. * .. Local Arrays .. REAL Q( 4, 4 ), RESULT( 2 ), T( 4, 4 ), T1( 4, 4 ), $ VAL( 9 ), VM( 2 ), WORK( LWORK ) * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL SCOPY, SLAEXC * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, REAL, SIGN, SQRT * .. * .. Executable Statements .. * * Get machine parameters * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) / EPS BIGNUM = ONE / SMLNUM * * Set up test case parameters * VAL( 1 ) = ZERO VAL( 2 ) = SQRT( SMLNUM ) VAL( 3 ) = ONE VAL( 4 ) = TWO VAL( 5 ) = SQRT( BIGNUM ) VAL( 6 ) = -SQRT( SMLNUM ) VAL( 7 ) = -ONE VAL( 8 ) = -TWO VAL( 9 ) = -SQRT( BIGNUM ) VM( 1 ) = ONE VM( 2 ) = ONE + TWO*EPS CALL SCOPY( 16, VAL( 4 ), 0, T( 1, 1 ), 1 ) * NINFO( 1 ) = 0 NINFO( 2 ) = 0 KNT = 0 LMAX = 0 RMAX = ZERO * * Begin test loop * DO 40 IA = 1, 9 DO 30 IAM = 1, 2 DO 20 IB = 1, 9 DO 10 IC = 1, 9 T( 1, 1 ) = VAL( IA )*VM( IAM ) T( 2, 2 ) = VAL( IC ) T( 1, 2 ) = VAL( IB ) T( 2, 1 ) = ZERO TNRM = MAX( ABS( T( 1, 1 ) ), ABS( T( 2, 2 ) ), $ ABS( T( 1, 2 ) ) ) CALL SCOPY( 16, T, 1, T1, 1 ) CALL SCOPY( 16, VAL( 1 ), 0, Q, 1 ) CALL SCOPY( 4, VAL( 3 ), 0, Q, 5 ) CALL SLAEXC( .TRUE., 2, T, 4, Q, 4, 1, 1, 1, WORK, $ INFO ) IF( INFO.NE.0 ) $ NINFO( INFO ) = NINFO( INFO ) + 1 CALL SHST01( 2, 1, 2, T1, 4, T, 4, Q, 4, WORK, LWORK, $ RESULT ) RES = RESULT( 1 ) + RESULT( 2 ) IF( INFO.NE.0 ) $ RES = RES + ONE / EPS IF( T( 1, 1 ).NE.T1( 2, 2 ) ) $ RES = RES + ONE / EPS IF( T( 2, 2 ).NE.T1( 1, 1 ) ) $ RES = RES + ONE / EPS IF( T( 2, 1 ).NE.ZERO ) $ RES = RES + ONE / EPS KNT = KNT + 1 IF( RES.GT.RMAX ) THEN LMAX = KNT RMAX = RES END IF 10 CONTINUE 20 CONTINUE 30 CONTINUE 40 CONTINUE * DO 110 IA = 1, 5 DO 100 IAM = 1, 2 DO 90 IB = 1, 5 DO 80 IC11 = 1, 5 DO 70 IC12 = 2, 5 DO 60 IC21 = 2, 4 DO 50 IC22 = -1, 1, 2 T( 1, 1 ) = VAL( IA )*VM( IAM ) T( 1, 2 ) = VAL( IB ) T( 1, 3 ) = -TWO*VAL( IB ) T( 2, 1 ) = ZERO T( 2, 2 ) = VAL( IC11 ) T( 2, 3 ) = VAL( IC12 ) T( 3, 1 ) = ZERO T( 3, 2 ) = -VAL( IC21 ) T( 3, 3 ) = VAL( IC11 )*REAL( IC22 ) TNRM = MAX( ABS( T( 1, 1 ) ), $ ABS( T( 1, 2 ) ), ABS( T( 1, 3 ) ), $ ABS( T( 2, 2 ) ), ABS( T( 2, 3 ) ), $ ABS( T( 3, 2 ) ), ABS( T( 3, 3 ) ) ) CALL SCOPY( 16, T, 1, T1, 1 ) CALL SCOPY( 16, VAL( 1 ), 0, Q, 1 ) CALL SCOPY( 4, VAL( 3 ), 0, Q, 5 ) CALL SLAEXC( .TRUE., 3, T, 4, Q, 4, 1, 1, 2, $ WORK, INFO ) IF( INFO.NE.0 ) $ NINFO( INFO ) = NINFO( INFO ) + 1 CALL SHST01( 3, 1, 3, T1, 4, T, 4, Q, 4, $ WORK, LWORK, RESULT ) RES = RESULT( 1 ) + RESULT( 2 ) IF( INFO.EQ.0 ) THEN IF( T1( 1, 1 ).NE.T( 3, 3 ) ) $ RES = RES + ONE / EPS IF( T( 3, 1 ).NE.ZERO ) $ RES = RES + ONE / EPS IF( T( 3, 2 ).NE.ZERO ) $ RES = RES + ONE / EPS IF( T( 2, 1 ).NE.0 .AND. $ ( T( 1, 1 ).NE.T( 2, $ 2 ) .OR. SIGN( ONE, T( 1, $ 2 ) ).EQ.SIGN( ONE, T( 2, 1 ) ) ) ) $ RES = RES + ONE / EPS END IF KNT = KNT + 1 IF( RES.GT.RMAX ) THEN LMAX = KNT RMAX = RES END IF 50 CONTINUE 60 CONTINUE 70 CONTINUE 80 CONTINUE 90 CONTINUE 100 CONTINUE 110 CONTINUE * DO 180 IA11 = 1, 5 DO 170 IA12 = 2, 5 DO 160 IA21 = 2, 4 DO 150 IA22 = -1, 1, 2 DO 140 ICM = 1, 2 DO 130 IB = 1, 5 DO 120 IC = 1, 5 T( 1, 1 ) = VAL( IA11 ) T( 1, 2 ) = VAL( IA12 ) T( 1, 3 ) = -TWO*VAL( IB ) T( 2, 1 ) = -VAL( IA21 ) T( 2, 2 ) = VAL( IA11 )*REAL( IA22 ) T( 2, 3 ) = VAL( IB ) T( 3, 1 ) = ZERO T( 3, 2 ) = ZERO T( 3, 3 ) = VAL( IC )*VM( ICM ) TNRM = MAX( ABS( T( 1, 1 ) ), $ ABS( T( 1, 2 ) ), ABS( T( 1, 3 ) ), $ ABS( T( 2, 2 ) ), ABS( T( 2, 3 ) ), $ ABS( T( 3, 2 ) ), ABS( T( 3, 3 ) ) ) CALL SCOPY( 16, T, 1, T1, 1 ) CALL SCOPY( 16, VAL( 1 ), 0, Q, 1 ) CALL SCOPY( 4, VAL( 3 ), 0, Q, 5 ) CALL SLAEXC( .TRUE., 3, T, 4, Q, 4, 1, 2, 1, $ WORK, INFO ) IF( INFO.NE.0 ) $ NINFO( INFO ) = NINFO( INFO ) + 1 CALL SHST01( 3, 1, 3, T1, 4, T, 4, Q, 4, $ WORK, LWORK, RESULT ) RES = RESULT( 1 ) + RESULT( 2 ) IF( INFO.EQ.0 ) THEN IF( T1( 3, 3 ).NE.T( 1, 1 ) ) $ RES = RES + ONE / EPS IF( T( 2, 1 ).NE.ZERO ) $ RES = RES + ONE / EPS IF( T( 3, 1 ).NE.ZERO ) $ RES = RES + ONE / EPS IF( T( 3, 2 ).NE.0 .AND. $ ( T( 2, 2 ).NE.T( 3, $ 3 ) .OR. SIGN( ONE, T( 2, $ 3 ) ).EQ.SIGN( ONE, T( 3, 2 ) ) ) ) $ RES = RES + ONE / EPS END IF KNT = KNT + 1 IF( RES.GT.RMAX ) THEN LMAX = KNT RMAX = RES END IF 120 CONTINUE 130 CONTINUE 140 CONTINUE 150 CONTINUE 160 CONTINUE 170 CONTINUE 180 CONTINUE * DO 300 IA11 = 1, 5 DO 290 IA12 = 2, 5 DO 280 IA21 = 2, 4 DO 270 IA22 = -1, 1, 2 DO 260 IB = 1, 5 DO 250 IC11 = 3, 4 DO 240 IC12 = 3, 4 DO 230 IC21 = 3, 4 DO 220 IC22 = -1, 1, 2 DO 210 ICM = 5, 7 IAM = 1 T( 1, 1 ) = VAL( IA11 )*VM( IAM ) T( 1, 2 ) = VAL( IA12 )*VM( IAM ) T( 1, 3 ) = -TWO*VAL( IB ) T( 1, 4 ) = HALF*VAL( IB ) T( 2, 1 ) = -T( 1, 2 )*VAL( IA21 ) T( 2, 2 ) = VAL( IA11 )* $ REAL( IA22 )*VM( IAM ) T( 2, 3 ) = VAL( IB ) T( 2, 4 ) = THREE*VAL( IB ) T( 3, 1 ) = ZERO T( 3, 2 ) = ZERO T( 3, 3 ) = VAL( IC11 )* $ ABS( VAL( ICM ) ) T( 3, 4 ) = VAL( IC12 )* $ ABS( VAL( ICM ) ) T( 4, 1 ) = ZERO T( 4, 2 ) = ZERO T( 4, 3 ) = -T( 3, 4 )*VAL( IC21 )* $ ABS( VAL( ICM ) ) T( 4, 4 ) = VAL( IC11 )* $ REAL( IC22 )* $ ABS( VAL( ICM ) ) TNRM = ZERO DO 200 I = 1, 4 DO 190 J = 1, 4 TNRM = MAX( TNRM, $ ABS( T( I, J ) ) ) 190 CONTINUE 200 CONTINUE CALL SCOPY( 16, T, 1, T1, 1 ) CALL SCOPY( 16, VAL( 1 ), 0, Q, 1 ) CALL SCOPY( 4, VAL( 3 ), 0, Q, 5 ) CALL SLAEXC( .TRUE., 4, T, 4, Q, 4, $ 1, 2, 2, WORK, INFO ) IF( INFO.NE.0 ) $ NINFO( INFO ) = NINFO( INFO ) + 1 CALL SHST01( 4, 1, 4, T1, 4, T, 4, $ Q, 4, WORK, LWORK, $ RESULT ) RES = RESULT( 1 ) + RESULT( 2 ) IF( INFO.EQ.0 ) THEN IF( T( 3, 1 ).NE.ZERO ) $ RES = RES + ONE / EPS IF( T( 4, 1 ).NE.ZERO ) $ RES = RES + ONE / EPS IF( T( 3, 2 ).NE.ZERO ) $ RES = RES + ONE / EPS IF( T( 4, 2 ).NE.ZERO ) $ RES = RES + ONE / EPS IF( T( 2, 1 ).NE.0 .AND. $ ( T( 1, 1 ).NE.T( 2, $ 2 ) .OR. SIGN( ONE, T( 1, $ 2 ) ).EQ.SIGN( ONE, T( 2, $ 1 ) ) ) )RES = RES + $ ONE / EPS IF( T( 4, 3 ).NE.0 .AND. $ ( T( 3, 3 ).NE.T( 4, $ 4 ) .OR. SIGN( ONE, T( 3, $ 4 ) ).EQ.SIGN( ONE, T( 4, $ 3 ) ) ) )RES = RES + $ ONE / EPS END IF KNT = KNT + 1 IF( RES.GT.RMAX ) THEN LMAX = KNT RMAX = RES END IF 210 CONTINUE 220 CONTINUE 230 CONTINUE 240 CONTINUE 250 CONTINUE 260 CONTINUE 270 CONTINUE 280 CONTINUE 290 CONTINUE 300 CONTINUE * RETURN * * End of SGET34 * END