numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/EIG/sget35.f 9212B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
*> \brief \b SGET35
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGET35( RMAX, LMAX, NINFO, KNT )
*
*       .. Scalar Arguments ..
*       INTEGER            KNT, LMAX, NINFO
*       REAL               RMAX
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGET35 tests STRSYL, a routine for solving the Sylvester matrix
*> equation
*>
*>    op(A)*X + ISGN*X*op(B) = scale*C,
*>
*> A and B are assumed to be in Schur canonical form, op() represents an
*> optional transpose, and ISGN can be -1 or +1.  Scale is an output
*> less than or equal to 1, chosen to avoid overflow in X.
*>
*> The test code verifies that the following residual is order 1:
*>
*>    norm(op(A)*X + ISGN*X*op(B) - scale*C) /
*>        (EPS*max(norm(A),norm(B))*norm(X))
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[out] RMAX
*> \verbatim
*>          RMAX is REAL
*>          Value of the largest test ratio.
*> \endverbatim
*>
*> \param[out] LMAX
*> \verbatim
*>          LMAX is INTEGER
*>          Example number where largest test ratio achieved.
*> \endverbatim
*>
*> \param[out] NINFO
*> \verbatim
*>          NINFO is INTEGER
*>          Number of examples where INFO is nonzero.
*> \endverbatim
*>
*> \param[out] KNT
*> \verbatim
*>          KNT is INTEGER
*>          Total number of examples tested.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_eig
*
*  =====================================================================
      SUBROUTINE SGET35( RMAX, LMAX, NINFO, KNT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            KNT, LMAX, NINFO
      REAL               RMAX
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      REAL               TWO, FOUR
      PARAMETER          ( TWO = 2.0E0, FOUR = 4.0E0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANA, TRANB
      INTEGER            I, IMA, IMB, IMLDA1, IMLDA2, IMLDB1, IMLOFF,
     $                   INFO, ISGN, ITRANA, ITRANB, J, M, N
      REAL               BIGNUM, CNRM, EPS, RES, RES1, RMUL, SCALE,
     $                   SMLNUM, TNRM, XNRM
*     ..
*     .. Local Arrays ..
      INTEGER            IDIM( 8 ), IVAL( 6, 6, 8 )
      REAL               A( 6, 6 ), B( 6, 6 ), C( 6, 6 ), CC( 6, 6 ),
     $                   DUM( 1 ), VM1( 3 ), VM2( 3 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGE
      EXTERNAL           SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, STRSYL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, REAL, SIN, SQRT
*     ..
*     .. Data statements ..
      DATA               IDIM / 1, 2, 3, 4, 3, 3, 6, 4 /
      DATA               IVAL / 1, 35*0, 1, 2, 4*0, -2, 0, 28*0, 1, 5*0,
     $                   5, 1, 2, 3*0, -8, -2, 1, 21*0, 3, 4, 4*0, -5,
     $                   3, 4*0, 1, 2, 1, 4, 2*0, -3, -9, -1, 1, 14*0,
     $                   1, 5*0, 2, 3, 4*0, 5, 6, 7, 21*0, 1, 5*0, 1, 3,
     $                   -4, 3*0, 2, 5, 2, 21*0, 1, 2, 4*0, -2, 0, 4*0,
     $                   5, 6, 3, 4, 2*0, -1, -9, -5, 2, 2*0, 4*8, 5, 6,
     $                   4*9, -7, 5, 1, 5*0, 1, 5, 2, 3*0, 2, -21, 5,
     $                   3*0, 1, 2, 3, 4, 14*0 /
*     ..
*     .. Executable Statements ..
*
*     Get machine parameters
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' )*FOUR / EPS
      BIGNUM = ONE / SMLNUM
*
*     Set up test case parameters
*
      VM1( 1 ) = SQRT( SMLNUM )
      VM1( 2 ) = ONE
      VM1( 3 ) = SQRT( BIGNUM )
      VM2( 1 ) = ONE
      VM2( 2 ) = ONE + TWO*EPS
      VM2( 3 ) = TWO
*
      KNT = 0
      NINFO = 0
      LMAX = 0
      RMAX = ZERO
*
*     Begin test loop
*
      DO 150 ITRANA = 1, 2
         DO 140 ITRANB = 1, 2
            DO 130 ISGN = -1, 1, 2
               DO 120 IMA = 1, 8
                  DO 110 IMLDA1 = 1, 3
                     DO 100 IMLDA2 = 1, 3
                        DO 90 IMLOFF = 1, 2
                           DO 80 IMB = 1, 8
                              DO 70 IMLDB1 = 1, 3
                                 IF( ITRANA.EQ.1 )
     $                              TRANA = 'N'
                                 IF( ITRANA.EQ.2 )
     $                              TRANA = 'T'
                                 IF( ITRANB.EQ.1 )
     $                              TRANB = 'N'
                                 IF( ITRANB.EQ.2 )
     $                              TRANB = 'T'
                                 M = IDIM( IMA )
                                 N = IDIM( IMB )
                                 TNRM = ZERO
                                 DO 20 I = 1, M
                                    DO 10 J = 1, M
                                       A( I, J ) = IVAL( I, J, IMA )
                                       IF( ABS( I-J ).LE.1 ) THEN
                                          A( I, J ) = A( I, J )*
     $                                                VM1( IMLDA1 )
                                          A( I, J ) = A( I, J )*
     $                                                VM2( IMLDA2 )
                                       ELSE
                                          A( I, J ) = A( I, J )*
     $                                                VM1( IMLOFF )
                                       END IF
                                       TNRM = MAX( TNRM,
     $                                        ABS( A( I, J ) ) )
   10                               CONTINUE
   20                            CONTINUE
                                 DO 40 I = 1, N
                                    DO 30 J = 1, N
                                       B( I, J ) = IVAL( I, J, IMB )
                                       IF( ABS( I-J ).LE.1 ) THEN
                                          B( I, J ) = B( I, J )*
     $                                                VM1( IMLDB1 )
                                       ELSE
                                          B( I, J ) = B( I, J )*
     $                                                VM1( IMLOFF )
                                       END IF
                                       TNRM = MAX( TNRM,
     $                                        ABS( B( I, J ) ) )
   30                               CONTINUE
   40                            CONTINUE
                                 CNRM = ZERO
                                 DO 60 I = 1, M
                                    DO 50 J = 1, N
                                       C( I, J ) = SIN( REAL( I*J ) )
                                       CNRM = MAX( CNRM, C( I, J ) )
                                       CC( I, J ) = C( I, J )
   50                               CONTINUE
   60                            CONTINUE
                                 KNT = KNT + 1
                                 CALL STRSYL( TRANA, TRANB, ISGN, M, N,
     $                                        A, 6, B, 6, C, 6, SCALE,
     $                                        INFO )
                                 IF( INFO.NE.0 )
     $                              NINFO = NINFO + 1
                                 XNRM = SLANGE( 'M', M, N, C, 6, DUM )
                                 RMUL = ONE
                                 IF( XNRM.GT.ONE .AND. TNRM.GT.ONE )
     $                                THEN
                                    IF( XNRM.GT.BIGNUM / TNRM ) THEN
                                       RMUL = ONE / MAX( XNRM, TNRM )
                                    END IF
                                 END IF
                                 CALL SGEMM( TRANA, 'N', M, N, M, RMUL,
     $                                       A, 6, C, 6, -SCALE*RMUL,
     $                                       CC, 6 )
                                 CALL SGEMM( 'N', TRANB, M, N, N,
     $                                       REAL( ISGN )*RMUL, C, 6, B,
     $                                       6, ONE, CC, 6 )
                                 RES1 = SLANGE( 'M', M, N, CC, 6, DUM )
                                 RES = RES1 / MAX( SMLNUM, SMLNUM*XNRM,
     $                                 ( ( RMUL*TNRM )*EPS )*XNRM )
                                 IF( RES.GT.RMAX ) THEN
                                    LMAX = KNT
                                    RMAX = RES
                                 END IF
   70                         CONTINUE
   80                      CONTINUE
   90                   CONTINUE
  100                CONTINUE
  110             CONTINUE
  120          CONTINUE
  130       CONTINUE
  140    CONTINUE
  150 CONTINUE
*
      RETURN
*
*     End of SGET35
*
      END