numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/EIG/sget36.f 6399B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
*> \brief \b SGET36
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGET36( RMAX, LMAX, NINFO, KNT, NIN )
*
*       .. Scalar Arguments ..
*       INTEGER            KNT, LMAX, NIN
*       REAL               RMAX
*       ..
*       .. Array Arguments ..
*       INTEGER            NINFO( 3 )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGET36 tests STREXC, a routine for moving blocks (either 1 by 1 or
*> 2 by 2) on the diagonal of a matrix in real Schur form.  Thus, SLAEXC
*> computes an orthogonal matrix Q such that
*>
*>    Q' * T1 * Q  = T2
*>
*> and where one of the diagonal blocks of T1 (the one at row IFST) has
*> been moved to position ILST.
*>
*> The test code verifies that the residual Q'*T1*Q-T2 is small, that T2
*> is in Schur form, and that the final position of the IFST block is
*> ILST (within +-1).
*>
*> The test matrices are read from a file with logical unit number NIN.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[out] RMAX
*> \verbatim
*>          RMAX is REAL
*>          Value of the largest test ratio.
*> \endverbatim
*>
*> \param[out] LMAX
*> \verbatim
*>          LMAX is INTEGER
*>          Example number where largest test ratio achieved.
*> \endverbatim
*>
*> \param[out] NINFO
*> \verbatim
*>          NINFO is INTEGER array, dimension (3)
*>          NINFO(J) is the number of examples where INFO=J.
*> \endverbatim
*>
*> \param[out] KNT
*> \verbatim
*>          KNT is INTEGER
*>          Total number of examples tested.
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*>          NIN is INTEGER
*>          Input logical unit number.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_eig
*
*  =====================================================================
      SUBROUTINE SGET36( RMAX, LMAX, NINFO, KNT, NIN )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            KNT, LMAX, NIN
      REAL               RMAX
*     ..
*     .. Array Arguments ..
      INTEGER            NINFO( 3 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      INTEGER            LDT, LWORK
      PARAMETER          ( LDT = 10, LWORK = 2*LDT*LDT )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IFST, IFST1, IFST2, IFSTSV, ILST, ILST1,
     $                   ILST2, ILSTSV, INFO1, INFO2, J, LOC, N
      REAL               EPS, RES
*     ..
*     .. Local Arrays ..
      REAL               Q( LDT, LDT ), RESULT( 2 ), T1( LDT, LDT ),
     $                   T2( LDT, LDT ), TMP( LDT, LDT ), WORK( LWORK )
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SHST01, SLACPY, SLASET, STREXC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'P' )
      RMAX = ZERO
      LMAX = 0
      KNT = 0
      NINFO( 1 ) = 0
      NINFO( 2 ) = 0
      NINFO( 3 ) = 0
*
*     Read input data until N=0
*
   10 CONTINUE
      READ( NIN, FMT = * )N, IFST, ILST
      IF( N.EQ.0 )
     $   RETURN
      KNT = KNT + 1
      DO 20 I = 1, N
         READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
   20 CONTINUE
      CALL SLACPY( 'F', N, N, TMP, LDT, T1, LDT )
      CALL SLACPY( 'F', N, N, TMP, LDT, T2, LDT )
      IFSTSV = IFST
      ILSTSV = ILST
      IFST1 = IFST
      ILST1 = ILST
      IFST2 = IFST
      ILST2 = ILST
      RES = ZERO
*
*     Test without accumulating Q
*
      CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
      CALL STREXC( 'N', N, T1, LDT, Q, LDT, IFST1, ILST1, WORK, INFO1 )
      DO 40 I = 1, N
         DO 30 J = 1, N
            IF( I.EQ.J .AND. Q( I, J ).NE.ONE )
     $         RES = RES + ONE / EPS
            IF( I.NE.J .AND. Q( I, J ).NE.ZERO )
     $         RES = RES + ONE / EPS
   30    CONTINUE
   40 CONTINUE
*
*     Test with accumulating Q
*
      CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
      CALL STREXC( 'V', N, T2, LDT, Q, LDT, IFST2, ILST2, WORK, INFO2 )
*
*     Compare T1 with T2
*
      DO 60 I = 1, N
         DO 50 J = 1, N
            IF( T1( I, J ).NE.T2( I, J ) )
     $         RES = RES + ONE / EPS
   50    CONTINUE
   60 CONTINUE
      IF( IFST1.NE.IFST2 )
     $   RES = RES + ONE / EPS
      IF( ILST1.NE.ILST2 )
     $   RES = RES + ONE / EPS
      IF( INFO1.NE.INFO2 )
     $   RES = RES + ONE / EPS
*
*     Test for successful reordering of T2
*
      IF( INFO2.NE.0 ) THEN
         NINFO( INFO2 ) = NINFO( INFO2 ) + 1
      ELSE
         IF( ABS( IFST2-IFSTSV ).GT.1 )
     $      RES = RES + ONE / EPS
         IF( ABS( ILST2-ILSTSV ).GT.1 )
     $      RES = RES + ONE / EPS
      END IF
*
*     Test for small residual, and orthogonality of Q
*
      CALL SHST01( N, 1, N, TMP, LDT, T2, LDT, Q, LDT, WORK, LWORK,
     $             RESULT )
      RES = RES + RESULT( 1 ) + RESULT( 2 )
*
*     Test for T2 being in Schur form
*
      LOC = 1
   70 CONTINUE
      IF( T2( LOC+1, LOC ).NE.ZERO ) THEN
*
*        2 by 2 block
*
         IF( T2( LOC, LOC+1 ).EQ.ZERO .OR. T2( LOC, LOC ).NE.
     $       T2( LOC+1, LOC+1 ) .OR. SIGN( ONE, T2( LOC, LOC+1 ) ).EQ.
     $       SIGN( ONE, T2( LOC+1, LOC ) ) )RES = RES + ONE / EPS
         DO 80 I = LOC + 2, N
            IF( T2( I, LOC ).NE.ZERO )
     $         RES = RES + ONE / RES
            IF( T2( I, LOC+1 ).NE.ZERO )
     $         RES = RES + ONE / RES
   80    CONTINUE
         LOC = LOC + 2
      ELSE
*
*        1 by 1 block
*
         DO 90 I = LOC + 1, N
            IF( T2( I, LOC ).NE.ZERO )
     $         RES = RES + ONE / RES
   90    CONTINUE
         LOC = LOC + 1
      END IF
      IF( LOC.LT.N )
     $   GO TO 70
      IF( RES.GT.RMAX ) THEN
         RMAX = RES
         LMAX = KNT
      END IF
      GO TO 10
*
*     End of SGET36
*
      END