numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/slatm4.f | 13188B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
*> \brief \b SLATM4 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND, * TRIANG, IDIST, ISEED, A, LDA ) * * .. Scalar Arguments .. * INTEGER IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2 * REAL AMAGN, RCOND, TRIANG * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * REAL A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLATM4 generates basic square matrices, which may later be *> multiplied by others in order to produce test matrices. It is *> intended mainly to be used to test the generalized eigenvalue *> routines. *> *> It first generates the diagonal and (possibly) subdiagonal, *> according to the value of ITYPE, NZ1, NZ2, ISIGN, AMAGN, and RCOND. *> It then fills in the upper triangle with random numbers, if TRIANG is *> non-zero. *> \endverbatim * * Arguments: * ========== * *> \param[in] ITYPE *> \verbatim *> ITYPE is INTEGER *> The "type" of matrix on the diagonal and sub-diagonal. *> If ITYPE < 0, then type abs(ITYPE) is generated and then *> swapped end for end (A(I,J) := A'(N-J,N-I).) See also *> the description of AMAGN and ISIGN. *> *> Special types: *> = 0: the zero matrix. *> = 1: the identity. *> = 2: a transposed Jordan block. *> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block *> followed by a k x k identity block, where k=(N-1)/2. *> If N is even, then k=(N-2)/2, and a zero diagonal entry *> is tacked onto the end. *> *> Diagonal types. The diagonal consists of NZ1 zeros, then *> k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE *> specifies the nonzero diagonal entries as follows: *> = 4: 1, ..., k *> = 5: 1, RCOND, ..., RCOND *> = 6: 1, ..., 1, RCOND *> = 7: 1, a, a^2, ..., a^(k-1)=RCOND *> = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND *> = 9: random numbers chosen from (RCOND,1) *> = 10: random numbers with distribution IDIST (see SLARND.) *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix. *> \endverbatim *> *> \param[in] NZ1 *> \verbatim *> NZ1 is INTEGER *> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will *> be zero. *> \endverbatim *> *> \param[in] NZ2 *> \verbatim *> NZ2 is INTEGER *> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will *> be zero. *> \endverbatim *> *> \param[in] ISIGN *> \verbatim *> ISIGN is INTEGER *> = 0: The sign of the diagonal and subdiagonal entries will *> be left unchanged. *> = 1: The diagonal and subdiagonal entries will have their *> sign changed at random. *> = 2: If ITYPE is 2 or 3, then the same as ISIGN=1. *> Otherwise, with probability 0.5, odd-even pairs of *> diagonal entries A(2*j-1,2*j-1), A(2*j,2*j) will be *> converted to a 2x2 block by pre- and post-multiplying *> by distinct random orthogonal rotations. The remaining *> diagonal entries will have their sign changed at random. *> \endverbatim *> *> \param[in] AMAGN *> \verbatim *> AMAGN is REAL *> The diagonal and subdiagonal entries will be multiplied by *> AMAGN. *> \endverbatim *> *> \param[in] RCOND *> \verbatim *> RCOND is REAL *> If abs(ITYPE) > 4, then the smallest diagonal entry will be *> entry will be RCOND. RCOND must be between 0 and 1. *> \endverbatim *> *> \param[in] TRIANG *> \verbatim *> TRIANG is REAL *> The entries above the diagonal will be random numbers with *> magnitude bounded by TRIANG (i.e., random numbers multiplied *> by TRIANG.) *> \endverbatim *> *> \param[in] IDIST *> \verbatim *> IDIST is INTEGER *> Specifies the type of distribution to be used to generate a *> random matrix. *> = 1: UNIFORM( 0, 1 ) *> = 2: UNIFORM( -1, 1 ) *> = 3: NORMAL ( 0, 1 ) *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The values of ISEED are changed on exit, and can *> be used in the next call to SLATM4 to continue the same *> random number sequence. *> Note: ISEED(4) should be odd, for the random number generator *> used at present. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is REAL array, dimension (LDA, N) *> Array to be computed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> Leading dimension of A. Must be at least 1 and at least N. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND, $ TRIANG, IDIST, ISEED, A, LDA ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2 REAL AMAGN, RCOND, TRIANG * .. * .. Array Arguments .. INTEGER ISEED( 4 ) REAL A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TWO PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 ) REAL HALF PARAMETER ( HALF = ONE / TWO ) * .. * .. Local Scalars .. INTEGER I, IOFF, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND, $ KLEN REAL ALPHA, CL, CR, SAFMIN, SL, SR, SV1, SV2, TEMP * .. * .. External Functions .. REAL SLAMCH, SLARAN, SLARND EXTERNAL SLAMCH, SLARAN, SLARND * .. * .. External Subroutines .. EXTERNAL SLASET * .. * .. Intrinsic Functions .. INTRINSIC ABS, EXP, LOG, MAX, MIN, MOD, REAL, SQRT * .. * .. Executable Statements .. * IF( N.LE.0 ) $ RETURN CALL SLASET( 'Full', N, N, ZERO, ZERO, A, LDA ) * * Insure a correct ISEED * IF( MOD( ISEED( 4 ), 2 ).NE.1 ) $ ISEED( 4 ) = ISEED( 4 ) + 1 * * Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2, * and RCOND * IF( ITYPE.NE.0 ) THEN IF( ABS( ITYPE ).GE.4 ) THEN KBEG = MAX( 1, MIN( N, NZ1+1 ) ) KEND = MAX( KBEG, MIN( N, N-NZ2 ) ) KLEN = KEND + 1 - KBEG ELSE KBEG = 1 KEND = N KLEN = N END IF ISDB = 1 ISDE = 0 GO TO ( 10, 30, 50, 80, 100, 120, 140, 160, $ 180, 200 )ABS( ITYPE ) * * abs(ITYPE) = 1: Identity * 10 CONTINUE DO 20 JD = 1, N A( JD, JD ) = ONE 20 CONTINUE GO TO 220 * * abs(ITYPE) = 2: Transposed Jordan block * 30 CONTINUE DO 40 JD = 1, N - 1 A( JD+1, JD ) = ONE 40 CONTINUE ISDB = 1 ISDE = N - 1 GO TO 220 * * abs(ITYPE) = 3: Transposed Jordan block, followed by the * identity. * 50 CONTINUE K = ( N-1 ) / 2 DO 60 JD = 1, K A( JD+1, JD ) = ONE 60 CONTINUE ISDB = 1 ISDE = K DO 70 JD = K + 2, 2*K + 1 A( JD, JD ) = ONE 70 CONTINUE GO TO 220 * * abs(ITYPE) = 4: 1,...,k * 80 CONTINUE DO 90 JD = KBEG, KEND A( JD, JD ) = REAL( JD-NZ1 ) 90 CONTINUE GO TO 220 * * abs(ITYPE) = 5: One large D value: * 100 CONTINUE DO 110 JD = KBEG + 1, KEND A( JD, JD ) = RCOND 110 CONTINUE A( KBEG, KBEG ) = ONE GO TO 220 * * abs(ITYPE) = 6: One small D value: * 120 CONTINUE DO 130 JD = KBEG, KEND - 1 A( JD, JD ) = ONE 130 CONTINUE A( KEND, KEND ) = RCOND GO TO 220 * * abs(ITYPE) = 7: Exponentially distributed D values: * 140 CONTINUE A( KBEG, KBEG ) = ONE IF( KLEN.GT.1 ) THEN ALPHA = RCOND**( ONE / REAL( KLEN-1 ) ) DO 150 I = 2, KLEN A( NZ1+I, NZ1+I ) = ALPHA**REAL( I-1 ) 150 CONTINUE END IF GO TO 220 * * abs(ITYPE) = 8: Arithmetically distributed D values: * 160 CONTINUE A( KBEG, KBEG ) = ONE IF( KLEN.GT.1 ) THEN ALPHA = ( ONE-RCOND ) / REAL( KLEN-1 ) DO 170 I = 2, KLEN A( NZ1+I, NZ1+I ) = REAL( KLEN-I )*ALPHA + RCOND 170 CONTINUE END IF GO TO 220 * * abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1): * 180 CONTINUE ALPHA = LOG( RCOND ) DO 190 JD = KBEG, KEND A( JD, JD ) = EXP( ALPHA*SLARAN( ISEED ) ) 190 CONTINUE GO TO 220 * * abs(ITYPE) = 10: Randomly distributed D values from DIST * 200 CONTINUE DO 210 JD = KBEG, KEND A( JD, JD ) = SLARND( IDIST, ISEED ) 210 CONTINUE * 220 CONTINUE * * Scale by AMAGN * DO 230 JD = KBEG, KEND A( JD, JD ) = AMAGN*REAL( A( JD, JD ) ) 230 CONTINUE DO 240 JD = ISDB, ISDE A( JD+1, JD ) = AMAGN*REAL( A( JD+1, JD ) ) 240 CONTINUE * * If ISIGN = 1 or 2, assign random signs to diagonal and * subdiagonal * IF( ISIGN.GT.0 ) THEN DO 250 JD = KBEG, KEND IF( REAL( A( JD, JD ) ).NE.ZERO ) THEN IF( SLARAN( ISEED ).GT.HALF ) $ A( JD, JD ) = -A( JD, JD ) END IF 250 CONTINUE DO 260 JD = ISDB, ISDE IF( REAL( A( JD+1, JD ) ).NE.ZERO ) THEN IF( SLARAN( ISEED ).GT.HALF ) $ A( JD+1, JD ) = -A( JD+1, JD ) END IF 260 CONTINUE END IF * * Reverse if ITYPE < 0 * IF( ITYPE.LT.0 ) THEN DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2 TEMP = A( JD, JD ) A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD ) A( KBEG+KEND-JD, KBEG+KEND-JD ) = TEMP 270 CONTINUE DO 280 JD = 1, ( N-1 ) / 2 TEMP = A( JD+1, JD ) A( JD+1, JD ) = A( N+1-JD, N-JD ) A( N+1-JD, N-JD ) = TEMP 280 CONTINUE END IF * * If ISIGN = 2, and no subdiagonals already, then apply * random rotations to make 2x2 blocks. * IF( ISIGN.EQ.2 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 ) THEN SAFMIN = SLAMCH( 'S' ) DO 290 JD = KBEG, KEND - 1, 2 IF( SLARAN( ISEED ).GT.HALF ) THEN * * Rotation on left. * CL = TWO*SLARAN( ISEED ) - ONE SL = TWO*SLARAN( ISEED ) - ONE TEMP = ONE / MAX( SAFMIN, SQRT( CL**2+SL**2 ) ) CL = CL*TEMP SL = SL*TEMP * * Rotation on right. * CR = TWO*SLARAN( ISEED ) - ONE SR = TWO*SLARAN( ISEED ) - ONE TEMP = ONE / MAX( SAFMIN, SQRT( CR**2+SR**2 ) ) CR = CR*TEMP SR = SR*TEMP * * Apply * SV1 = A( JD, JD ) SV2 = A( JD+1, JD+1 ) A( JD, JD ) = CL*CR*SV1 + SL*SR*SV2 A( JD+1, JD ) = -SL*CR*SV1 + CL*SR*SV2 A( JD, JD+1 ) = -CL*SR*SV1 + SL*CR*SV2 A( JD+1, JD+1 ) = SL*SR*SV1 + CL*CR*SV2 END IF 290 CONTINUE END IF * END IF * * Fill in upper triangle (except for 2x2 blocks) * IF( TRIANG.NE.ZERO ) THEN IF( ISIGN.NE.2 .OR. ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN IOFF = 1 ELSE IOFF = 2 DO 300 JR = 1, N - 1 IF( A( JR+1, JR ).EQ.ZERO ) $ A( JR, JR+1 ) = TRIANG*SLARND( IDIST, ISEED ) 300 CONTINUE END IF * DO 320 JC = 2, N DO 310 JR = 1, JC - IOFF A( JR, JC ) = TRIANG*SLARND( IDIST, ISEED ) 310 CONTINUE 320 CONTINUE END IF * RETURN * * End of SLATM4 * END