numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/EIG/sstech.f 5975B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
*> \brief \b SSTECH
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SSTECH( N, A, B, EIG, TOL, WORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, N
*       REAL               TOL
*       ..
*       .. Array Arguments ..
*       REAL               A( * ), B( * ), EIG( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    Let T be the tridiagonal matrix with diagonal entries A(1) ,...,
*>    A(N) and offdiagonal entries B(1) ,..., B(N-1)).  SSTECH checks to
*>    see if EIG(1) ,..., EIG(N) are indeed accurate eigenvalues of T.
*>    It does this by expanding each EIG(I) into an interval
*>    [SVD(I) - EPS, SVD(I) + EPS], merging overlapping intervals if
*>    any, and using Sturm sequences to count and verify whether each
*>    resulting interval has the correct number of eigenvalues (using
*>    SSTECT).  Here EPS = TOL*MACHEPS*MAXEIG, where MACHEPS is the
*>    machine precision and MAXEIG is the absolute value of the largest
*>    eigenvalue. If each interval contains the correct number of
*>    eigenvalues, INFO = 0 is returned, otherwise INFO is the index of
*>    the first eigenvalue in the first bad interval.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The dimension of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension (N)
*>          The diagonal entries of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension (N-1)
*>          The offdiagonal entries of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] EIG
*> \verbatim
*>          EIG is REAL array, dimension (N)
*>          The purported eigenvalues to be checked.
*> \endverbatim
*>
*> \param[in] TOL
*> \verbatim
*>          TOL is REAL
*>          Error tolerance for checking, a multiple of the
*>          machine precision.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          0  if the eigenvalues are all correct (to within
*>             1 +- TOL*MACHEPS*MAXEIG)
*>          >0 if the interval containing the INFO-th eigenvalue
*>             contains the incorrect number of eigenvalues.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_eig
*
*  =====================================================================
      SUBROUTINE SSTECH( N, A, B, EIG, TOL, WORK, INFO )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
      REAL               TOL
*     ..
*     .. Array Arguments ..
      REAL               A( * ), B( * ), EIG( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            BPNT, COUNT, I, ISUB, J, NUML, NUMU, TPNT
      REAL               EMIN, EPS, LOWER, MX, TUPPR, UNFLEP, UPPER
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SSTECT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Check input parameters
*
      INFO = 0
      IF( N.EQ.0 )
     $   RETURN
      IF( N.LT.0 ) THEN
         INFO = -1
         RETURN
      END IF
      IF( TOL.LT.ZERO ) THEN
         INFO = -5
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
      UNFLEP = SLAMCH( 'Safe minimum' ) / EPS
      EPS = TOL*EPS
*
*     Compute maximum absolute eigenvalue, error tolerance
*
      MX = ABS( EIG( 1 ) )
      DO 10 I = 2, N
         MX = MAX( MX, ABS( EIG( I ) ) )
   10 CONTINUE
      EPS = MAX( EPS*MX, UNFLEP )
*
*     Sort eigenvalues from EIG into WORK
*
      DO 20 I = 1, N
         WORK( I ) = EIG( I )
   20 CONTINUE
      DO 40 I = 1, N - 1
         ISUB = 1
         EMIN = WORK( 1 )
         DO 30 J = 2, N + 1 - I
            IF( WORK( J ).LT.EMIN ) THEN
               ISUB = J
               EMIN = WORK( J )
            END IF
   30    CONTINUE
         IF( ISUB.NE.N+1-I ) THEN
            WORK( ISUB ) = WORK( N+1-I )
            WORK( N+1-I ) = EMIN
         END IF
   40 CONTINUE
*
*     TPNT points to singular value at right endpoint of interval
*     BPNT points to singular value at left  endpoint of interval
*
      TPNT = 1
      BPNT = 1
*
*     Begin loop over all intervals
*
   50 CONTINUE
      UPPER = WORK( TPNT ) + EPS
      LOWER = WORK( BPNT ) - EPS
*
*     Begin loop merging overlapping intervals
*
   60 CONTINUE
      IF( BPNT.EQ.N )
     $   GO TO 70
      TUPPR = WORK( BPNT+1 ) + EPS
      IF( TUPPR.LT.LOWER )
     $   GO TO 70
*
*     Merge
*
      BPNT = BPNT + 1
      LOWER = WORK( BPNT ) - EPS
      GO TO 60
   70 CONTINUE
*
*     Count singular values in interval [ LOWER, UPPER ]
*
      CALL SSTECT( N, A, B, LOWER, NUML )
      CALL SSTECT( N, A, B, UPPER, NUMU )
      COUNT = NUMU - NUML
      IF( COUNT.NE.BPNT-TPNT+1 ) THEN
*
*        Wrong number of singular values in interval
*
         INFO = TPNT
         GO TO 80
      END IF
      TPNT = BPNT + 1
      BPNT = TPNT
      IF( TPNT.LE.N )
     $   GO TO 50
   80 CONTINUE
      RETURN
*
*     End of SSTECH
*
      END