numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/sstt21.f | 6386B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
*> \brief \b SSTT21 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK, * RESULT ) * * .. Scalar Arguments .. * INTEGER KBAND, LDU, N * .. * .. Array Arguments .. * REAL AD( * ), AE( * ), RESULT( 2 ), SD( * ), * $ SE( * ), U( LDU, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SSTT21 checks a decomposition of the form *> *> A = U S U' *> *> where ' means transpose, A is symmetric tridiagonal, U is orthogonal, *> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1). *> Two tests are performed: *> *> RESULT(1) = | A - U S U' | / ( |A| n ulp ) *> *> RESULT(2) = | I - UU' | / ( n ulp ) *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The size of the matrix. If it is zero, SSTT21 does nothing. *> It must be at least zero. *> \endverbatim *> *> \param[in] KBAND *> \verbatim *> KBAND is INTEGER *> The bandwidth of the matrix S. It may only be zero or one. *> If zero, then S is diagonal, and SE is not referenced. If *> one, then S is symmetric tri-diagonal. *> \endverbatim *> *> \param[in] AD *> \verbatim *> AD is REAL array, dimension (N) *> The diagonal of the original (unfactored) matrix A. A is *> assumed to be symmetric tridiagonal. *> \endverbatim *> *> \param[in] AE *> \verbatim *> AE is REAL array, dimension (N-1) *> The off-diagonal of the original (unfactored) matrix A. A *> is assumed to be symmetric tridiagonal. AE(1) is the (1,2) *> and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. *> \endverbatim *> *> \param[in] SD *> \verbatim *> SD is REAL array, dimension (N) *> The diagonal of the (symmetric tri-) diagonal matrix S. *> \endverbatim *> *> \param[in] SE *> \verbatim *> SE is REAL array, dimension (N-1) *> The off-diagonal of the (symmetric tri-) diagonal matrix S. *> Not referenced if KBSND=0. If KBAND=1, then AE(1) is the *> (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) *> element, etc. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is REAL array, dimension (LDU, N) *> The orthogonal matrix in the decomposition. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of U. LDU must be at least N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (N*(N+1)) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (2) *> The values computed by the two tests described above. The *> values are currently limited to 1/ulp, to avoid overflow. *> RESULT(1) is always modified. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK, $ RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER KBAND, LDU, N * .. * .. Array Arguments .. REAL AD( * ), AE( * ), RESULT( 2 ), SD( * ), $ SE( * ), U( LDU, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. INTEGER J REAL ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM * .. * .. External Functions .. REAL SLAMCH, SLANGE, SLANSY EXTERNAL SLAMCH, SLANGE, SLANSY * .. * .. External Subroutines .. EXTERNAL SGEMM, SLASET, SSYR, SSYR2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL * .. * .. Executable Statements .. * * 1) Constants * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Precision' ) * * Do Test 1 * * Copy A & Compute its 1-Norm: * CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N ) * ANORM = ZERO TEMP1 = ZERO * DO 10 J = 1, N - 1 WORK( ( N+1 )*( J-1 )+1 ) = AD( J ) WORK( ( N+1 )*( J-1 )+2 ) = AE( J ) TEMP2 = ABS( AE( J ) ) ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 ) TEMP1 = TEMP2 10 CONTINUE * WORK( N**2 ) = AD( N ) ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL ) * * Norm of A - USU' * DO 20 J = 1, N CALL SSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N ) 20 CONTINUE * IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN DO 30 J = 1, N - 1 CALL SSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1, $ WORK, N ) 30 CONTINUE END IF * WNORM = SLANSY( '1', 'L', N, WORK, N, WORK( N**2+1 ) ) * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) END IF END IF * * Do Test 2 * * Compute UU' - I * CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK, $ N ) * DO 40 J = 1, N WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE 40 CONTINUE * RESULT( 2 ) = MIN( REAL( N ), SLANGE( '1', N, N, WORK, N, $ WORK( N**2+1 ) ) ) / ( N*ULP ) * RETURN * * End of SSTT21 * END