numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/ssxt1.f | 3978B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
*> \brief \b SSXT1 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * REAL FUNCTION SSXT1( IJOB, D1, N1, D2, N2, ABSTOL, * ULP, UNFL ) * * .. Scalar Arguments .. * INTEGER IJOB, N1, N2 * REAL ABSTOL, ULP, UNFL * .. * .. Array Arguments .. * REAL D1( * ), D2( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SSXT1 computes the difference between a set of eigenvalues. *> The result is returned as the function value. *> *> IJOB = 1: Computes max { min | D1(i)-D2(j) | } *> i j *> *> IJOB = 2: Computes max { min | D1(i)-D2(j) | / *> i j *> ( ABSTOL + |D1(i)|*ULP ) } *> \endverbatim * * Arguments: * ========== * *> \param[in] IJOB *> \verbatim *> IJOB is INTEGER *> Specifies the type of tests to be performed. (See above.) *> \endverbatim *> *> \param[in] D1 *> \verbatim *> D1 is REAL array, dimension (N1) *> The first array. D1 should be in increasing order, i.e., *> D1(j) <= D1(j+1). *> \endverbatim *> *> \param[in] N1 *> \verbatim *> N1 is INTEGER *> The length of D1. *> \endverbatim *> *> \param[in] D2 *> \verbatim *> D2 is REAL array, dimension (N2) *> The second array. D2 should be in increasing order, i.e., *> D2(j) <= D2(j+1). *> \endverbatim *> *> \param[in] N2 *> \verbatim *> N2 is INTEGER *> The length of D2. *> \endverbatim *> *> \param[in] ABSTOL *> \verbatim *> ABSTOL is REAL *> The absolute tolerance, used as a measure of the error. *> \endverbatim *> *> \param[in] ULP *> \verbatim *> ULP is REAL *> Machine precision. *> \endverbatim *> *> \param[in] UNFL *> \verbatim *> UNFL is REAL *> The smallest positive number whose reciprocal does not *> overflow. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_eig * * ===================================================================== REAL FUNCTION SSXT1( IJOB, D1, N1, D2, N2, ABSTOL, $ ULP, UNFL ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IJOB, N1, N2 REAL ABSTOL, ULP, UNFL * .. * .. Array Arguments .. REAL D1( * ), D2( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E0 ) * .. * .. Local Scalars .. INTEGER I, J REAL TEMP1, TEMP2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * TEMP1 = ZERO * J = 1 DO 20 I = 1, N1 10 CONTINUE IF( D2( J ).LT.D1( I ) .AND. J.LT.N2 ) THEN J = J + 1 GO TO 10 END IF IF( J.EQ.1 ) THEN TEMP2 = ABS( D2( J )-D1( I ) ) IF( IJOB.EQ.2 ) $ TEMP2 = TEMP2 / MAX( UNFL, ABSTOL+ULP*ABS( D1( I ) ) ) ELSE TEMP2 = MIN( ABS( D2( J )-D1( I ) ), $ ABS( D1( I )-D2( J-1 ) ) ) IF( IJOB.EQ.2 ) $ TEMP2 = TEMP2 / MAX( UNFL, ABSTOL+ULP*ABS( D1( I ) ) ) END IF TEMP1 = MAX( TEMP1, TEMP2 ) 20 CONTINUE * SSXT1 = TEMP1 RETURN * * End of SSXT1 * END