numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/zchkbb.f | 23539B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
*> \brief \b ZCHKBB * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE, * NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB, * BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK, * LWORK, RWORK, RESULT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT, * $ NRHS, NSIZES, NTYPES, NWDTHS * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * ) * DOUBLE PRECISION BD( * ), BE( * ), RESULT( * ), RWORK( * ) * COMPLEX*16 A( LDA, * ), AB( LDAB, * ), C( LDC, * ), * $ CC( LDC, * ), P( LDP, * ), Q( LDQ, * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKBB tests the reduction of a general complex rectangular band *> matrix to real bidiagonal form. *> *> ZGBBRD factors a general band matrix A as Q B P* , where * means *> conjugate transpose, B is upper bidiagonal, and Q and P are unitary; *> ZGBBRD can also overwrite a given matrix C with Q* C . *> *> For each pair of matrix dimensions (M,N) and each selected matrix *> type, an M by N matrix A and an M by NRHS matrix C are generated. *> The problem dimensions are as follows *> A: M x N *> Q: M x M *> P: N x N *> B: min(M,N) x min(M,N) *> C: M x NRHS *> *> For each generated matrix, 4 tests are performed: *> *> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' *> *> (2) | I - Q' Q | / ( M ulp ) *> *> (3) | I - PT PT' | / ( N ulp ) *> *> (4) | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C. *> *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> The possible matrix types are *> *> (1) The zero matrix. *> (2) The identity matrix. *> *> (3) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (4) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random signs. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random signs. *> *> (6) Same as (3), but multiplied by SQRT( overflow threshold ) *> (7) Same as (3), but multiplied by SQRT( underflow threshold ) *> *> (8) A matrix of the form U D V, where U and V are orthogonal and *> D has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal. *> *> (9) A matrix of the form U D V, where U and V are orthogonal and *> D has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal. *> *> (10) A matrix of the form U D V, where U and V are orthogonal and *> D has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal. *> *> (11) Same as (8), but multiplied by SQRT( overflow threshold ) *> (12) Same as (8), but multiplied by SQRT( underflow threshold ) *> *> (13) Rectangular matrix with random entries chosen from (-1,1). *> (14) Same as (13), but multiplied by SQRT( overflow threshold ) *> (15) Same as (13), but multiplied by SQRT( underflow threshold ) *> \endverbatim * * Arguments: * ========== * *> \param[in] NSIZES *> \verbatim *> NSIZES is INTEGER *> The number of values of M and N contained in the vectors *> MVAL and NVAL. The matrix sizes are used in pairs (M,N). *> If NSIZES is zero, ZCHKBB does nothing. NSIZES must be at *> least zero. *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NSIZES) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NSIZES) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NWDTHS *> \verbatim *> NWDTHS is INTEGER *> The number of bandwidths to use. If it is zero, *> ZCHKBB does nothing. It must be at least zero. *> \endverbatim *> *> \param[in] KK *> \verbatim *> KK is INTEGER array, dimension (NWDTHS) *> An array containing the bandwidths to be used for the band *> matrices. The values must be at least zero. *> \endverbatim *> *> \param[in] NTYPES *> \verbatim *> NTYPES is INTEGER *> The number of elements in DOTYPE. If it is zero, ZCHKBB *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> \endverbatim *> *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns in the "right-hand side" matrix C. *> If NRHS = 0, then the operations on the right-hand side will *> not be tested. NRHS must be at least 0. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to ZCHKBB to continue the same random number *> sequence. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] NOUNIT *> \verbatim *> NOUNIT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension *> (LDA, max(NN)) *> Used to hold the matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. It must be at least 1 *> and at least max( NN ). *> \endverbatim *> *> \param[out] AB *> \verbatim *> AB is DOUBLE PRECISION array, dimension (LDAB, max(NN)) *> Used to hold A in band storage format. *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of AB. It must be at least 2 (not 1!) *> and at least max( KK )+1. *> \endverbatim *> *> \param[out] BD *> \verbatim *> BD is DOUBLE PRECISION array, dimension (max(NN)) *> Used to hold the diagonal of the bidiagonal matrix computed *> by ZGBBRD. *> \endverbatim *> *> \param[out] BE *> \verbatim *> BE is DOUBLE PRECISION array, dimension (max(NN)) *> Used to hold the off-diagonal of the bidiagonal matrix *> computed by ZGBBRD. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is COMPLEX*16 array, dimension (LDQ, max(NN)) *> Used to hold the unitary matrix Q computed by ZGBBRD. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of Q. It must be at least 1 *> and at least max( NN ). *> \endverbatim *> *> \param[out] P *> \verbatim *> P is COMPLEX*16 array, dimension (LDP, max(NN)) *> Used to hold the unitary matrix P computed by ZGBBRD. *> \endverbatim *> *> \param[in] LDP *> \verbatim *> LDP is INTEGER *> The leading dimension of P. It must be at least 1 *> and at least max( NN ). *> \endverbatim *> *> \param[out] C *> \verbatim *> C is COMPLEX*16 array, dimension (LDC, max(NN)) *> Used to hold the matrix C updated by ZGBBRD. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of U. It must be at least 1 *> and at least max( NN ). *> \endverbatim *> *> \param[out] CC *> \verbatim *> CC is COMPLEX*16 array, dimension (LDC, max(NN)) *> Used to hold a copy of the matrix C. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The number of entries in WORK. This must be at least *> max( LDA+1, max(NN)+1 )*max(NN). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (max(NN)) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (4) *> The values computed by the tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> If 0, then everything ran OK. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NTEST The number of tests performed, or which can *> be performed so far, for the current matrix. *> NTESTT The total number of tests performed so far. *> NMAX Largest value in NN. *> NMATS The number of matrices generated so far. *> NERRS The number of tests which have exceeded THRESH *> so far. *> COND, IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTOVFL, RTUNFL Square roots of the previous 2 values. *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE, $ NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB, $ BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK, $ LWORK, RWORK, RESULT, INFO ) * * -- LAPACK test routine (input) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT, $ NRHS, NSIZES, NTYPES, NWDTHS DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * ) DOUBLE PRECISION BD( * ), BE( * ), RESULT( * ), RWORK( * ) COMPLEX*16 A( LDA, * ), AB( LDAB, * ), C( LDC, * ), $ CC( LDC, * ), P( LDP, * ), Q( LDQ, * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 15 ) * .. * .. Local Scalars .. LOGICAL BADMM, BADNN, BADNNB INTEGER I, IINFO, IMODE, ITYPE, J, JCOL, JR, JSIZE, $ JTYPE, JWIDTH, K, KL, KMAX, KU, M, MMAX, MNMAX, $ MNMIN, MTYPES, N, NERRS, NMATS, NMAX, NTEST, $ NTESTT DOUBLE PRECISION AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL, ULP, $ ULPINV, UNFL * .. * .. Local Arrays .. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ), $ KMODE( MAXTYP ), KTYPE( MAXTYP ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL DLAHD2, DLASUM, XERBLA, ZBDT01, ZBDT02, ZGBBRD, $ ZLACPY, ZLASET, ZLATMR, ZLATMS, ZUNT01 * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 5*4, 5*6, 3*9 / DATA KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3 / DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0, $ 0, 0 / * .. * .. Executable Statements .. * * Check for errors * NTESTT = 0 INFO = 0 * * Important constants * BADMM = .FALSE. BADNN = .FALSE. MMAX = 1 NMAX = 1 MNMAX = 1 DO 10 J = 1, NSIZES MMAX = MAX( MMAX, MVAL( J ) ) IF( MVAL( J ).LT.0 ) $ BADMM = .TRUE. NMAX = MAX( NMAX, NVAL( J ) ) IF( NVAL( J ).LT.0 ) $ BADNN = .TRUE. MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) ) 10 CONTINUE * BADNNB = .FALSE. KMAX = 0 DO 20 J = 1, NWDTHS KMAX = MAX( KMAX, KK( J ) ) IF( KK( J ).LT.0 ) $ BADNNB = .TRUE. 20 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADMM ) THEN INFO = -2 ELSE IF( BADNN ) THEN INFO = -3 ELSE IF( NWDTHS.LT.0 ) THEN INFO = -4 ELSE IF( BADNNB ) THEN INFO = -5 ELSE IF( NTYPES.LT.0 ) THEN INFO = -6 ELSE IF( NRHS.LT.0 ) THEN INFO = -8 ELSE IF( LDA.LT.NMAX ) THEN INFO = -13 ELSE IF( LDAB.LT.2*KMAX+1 ) THEN INFO = -15 ELSE IF( LDQ.LT.NMAX ) THEN INFO = -19 ELSE IF( LDP.LT.NMAX ) THEN INFO = -21 ELSE IF( LDC.LT.NMAX ) THEN INFO = -23 ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN INFO = -26 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZCHKBB', -INFO ) RETURN END IF * * Quick return if possible * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 ) $ RETURN * * More Important constants * UNFL = DLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) ULPINV = ONE / ULP RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) * * Loop over sizes, widths, types * NERRS = 0 NMATS = 0 * DO 160 JSIZE = 1, NSIZES M = MVAL( JSIZE ) N = NVAL( JSIZE ) MNMIN = MIN( M, N ) AMNINV = ONE / DBLE( MAX( 1, M, N ) ) * DO 150 JWIDTH = 1, NWDTHS K = KK( JWIDTH ) IF( K.GE.M .AND. K.GE.N ) $ GO TO 150 KL = MAX( 0, MIN( M-1, K ) ) KU = MAX( 0, MIN( N-1, K ) ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 140 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 140 NMATS = NMATS + 1 NTEST = 0 * DO 30 J = 1, 4 IOLDSD( J ) = ISEED( J ) 30 CONTINUE * * Compute "A". * * Control parameters: * * KMAGN KMODE KTYPE * =1 O(1) clustered 1 zero * =2 large clustered 2 identity * =3 small exponential (none) * =4 arithmetic diagonal, (w/ singular values) * =5 random log (none) * =6 random nonhermitian, w/ singular values * =7 (none) * =8 (none) * =9 random nonhermitian * IF( MTYPES.GT.MAXTYP ) $ GO TO 90 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*AMNINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*MAX( M, N )*ULPINV GO TO 70 * 70 CONTINUE * CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA ) CALL ZLASET( 'Full', LDAB, N, CZERO, CZERO, AB, LDAB ) IINFO = 0 COND = ULPINV * * Special Matrices -- Identity & Jordan block * * Zero * IF( ITYPE.EQ.1 ) THEN IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, singular values specified * CALL ZLATMS( M, N, 'S', ISEED, 'N', RWORK, IMODE, $ COND, ANORM, 0, 0, 'N', A, LDA, WORK, $ IINFO ) * ELSE IF( ITYPE.EQ.6 ) THEN * * Nonhermitian, singular values specified * CALL ZLATMS( M, N, 'S', ISEED, 'N', RWORK, IMODE, $ COND, ANORM, KL, KU, 'N', A, LDA, WORK, $ IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * Nonhermitian, random entries * CALL ZLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, KL, $ KU, ZERO, ANORM, 'N', A, LDA, IDUMMA, $ IINFO ) * ELSE * IINFO = 1 END IF * * Generate Right-Hand Side * CALL ZLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE, $ CONE, 'T', 'N', WORK( M+1 ), 1, ONE, $ WORK( 2*M+1 ), 1, ONE, 'N', IDUMMA, M, NRHS, $ ZERO, ONE, 'NO', C, LDC, IDUMMA, IINFO ) * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) RETURN END IF * 90 CONTINUE * * Copy A to band storage. * DO 110 J = 1, N DO 100 I = MAX( 1, J-KU ), MIN( M, J+KL ) AB( KU+1+I-J, J ) = A( I, J ) 100 CONTINUE 110 CONTINUE * * Copy C * CALL ZLACPY( 'Full', M, NRHS, C, LDC, CC, LDC ) * * Call ZGBBRD to compute B, Q and P, and to update C. * CALL ZGBBRD( 'B', M, N, NRHS, KL, KU, AB, LDAB, BD, BE, $ Q, LDQ, P, LDP, CC, LDC, WORK, RWORK, $ IINFO ) * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZGBBRD', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 1 ) = ULPINV GO TO 120 END IF END IF * * Test 1: Check the decomposition A := Q * B * P' * 2: Check the orthogonality of Q * 3: Check the orthogonality of P * 4: Check the computation of Q' * C * CALL ZBDT01( M, N, -1, A, LDA, Q, LDQ, BD, BE, P, LDP, $ WORK, RWORK, RESULT( 1 ) ) CALL ZUNT01( 'Columns', M, M, Q, LDQ, WORK, LWORK, RWORK, $ RESULT( 2 ) ) CALL ZUNT01( 'Rows', N, N, P, LDP, WORK, LWORK, RWORK, $ RESULT( 3 ) ) CALL ZBDT02( M, NRHS, C, LDC, CC, LDC, Q, LDQ, WORK, $ RWORK, RESULT( 4 ) ) * * End of Loop -- Check for RESULT(j) > THRESH * NTEST = 4 120 CONTINUE NTESTT = NTESTT + NTEST * * Print out tests which fail. * DO 130 JR = 1, NTEST IF( RESULT( JR ).GE.THRESH ) THEN IF( NERRS.EQ.0 ) $ CALL DLAHD2( NOUNIT, 'ZBB' ) NERRS = NERRS + 1 WRITE( NOUNIT, FMT = 9998 )M, N, K, IOLDSD, JTYPE, $ JR, RESULT( JR ) END IF 130 CONTINUE * 140 CONTINUE 150 CONTINUE 160 CONTINUE * * Summary * CALL DLASUM( 'ZBB', NOUNIT, NERRS, NTESTT ) RETURN * 9999 FORMAT( ' ZCHKBB: ', A, ' returned INFO=', I5, '.', / 9X, 'M=', $ I5, ' N=', I5, ' K=', I5, ', JTYPE=', I5, ', ISEED=(', $ 3( I5, ',' ), I5, ')' ) 9998 FORMAT( ' M =', I4, ' N=', I4, ', K=', I3, ', seed=', $ 4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 ) * * End of ZCHKBB * END