numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/zchkbd.f | 33322B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
*> \brief \b ZCHKBD * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS, * ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX, * Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK, * RWORK, NOUT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS, * $ NSIZES, NTYPES * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ) * DOUBLE PRECISION BD( * ), BE( * ), RWORK( * ), S1( * ), S2( * ) * COMPLEX*16 A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ), * $ U( LDPT, * ), VT( LDPT, * ), WORK( * ), * $ X( LDX, * ), Y( LDX, * ), Z( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKBD checks the singular value decomposition (SVD) routines. *> *> ZGEBRD reduces a complex general m by n matrix A to real upper or *> lower bidiagonal form by an orthogonal transformation: Q' * A * P = B *> (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n *> and lower bidiagonal if m < n. *> *> ZUNGBR generates the orthogonal matrices Q and P' from ZGEBRD. *> Note that Q and P are not necessarily square. *> *> ZBDSQR computes the singular value decomposition of the bidiagonal *> matrix B as B = U S V'. It is called three times to compute *> 1) B = U S1 V', where S1 is the diagonal matrix of singular *> values and the columns of the matrices U and V are the left *> and right singular vectors, respectively, of B. *> 2) Same as 1), but the singular values are stored in S2 and the *> singular vectors are not computed. *> 3) A = (UQ) S (P'V'), the SVD of the original matrix A. *> In addition, ZBDSQR has an option to apply the left orthogonal matrix *> U to a matrix X, useful in least squares applications. *> *> For each pair of matrix dimensions (M,N) and each selected matrix *> type, an M by N matrix A and an M by NRHS matrix X are generated. *> The problem dimensions are as follows *> A: M x N *> Q: M x min(M,N) (but M x M if NRHS > 0) *> P: min(M,N) x N *> B: min(M,N) x min(M,N) *> U, V: min(M,N) x min(M,N) *> S1, S2 diagonal, order min(M,N) *> X: M x NRHS *> *> For each generated matrix, 14 tests are performed: *> *> Test ZGEBRD and ZUNGBR *> *> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' *> *> (2) | I - Q' Q | / ( M ulp ) *> *> (3) | I - PT PT' | / ( N ulp ) *> *> Test ZBDSQR on bidiagonal matrix B *> *> (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' *> *> (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X *> and Z = U' Y. *> (6) | I - U' U | / ( min(M,N) ulp ) *> *> (7) | I - VT VT' | / ( min(M,N) ulp ) *> *> (8) S1 contains min(M,N) nonnegative values in decreasing order. *> (Return 0 if true, 1/ULP if false.) *> *> (9) 0 if the true singular values of B are within THRESH of *> those in S1. 2*THRESH if they are not. (Tested using *> DSVDCH) *> *> (10) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without *> computing U and V. *> *> Test ZBDSQR on matrix A *> *> (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) *> *> (12) | X - (QU) Z | / ( |X| max(M,k) ulp ) *> *> (13) | I - (QU)'(QU) | / ( M ulp ) *> *> (14) | I - (VT PT) (PT'VT') | / ( N ulp ) *> *> The possible matrix types are *> *> (1) The zero matrix. *> (2) The identity matrix. *> *> (3) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (4) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random signs. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random signs. *> *> (6) Same as (3), but multiplied by SQRT( overflow threshold ) *> (7) Same as (3), but multiplied by SQRT( underflow threshold ) *> *> (8) A matrix of the form U D V, where U and V are orthogonal and *> D has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal. *> *> (9) A matrix of the form U D V, where U and V are orthogonal and *> D has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal. *> *> (10) A matrix of the form U D V, where U and V are orthogonal and *> D has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal. *> *> (11) Same as (8), but multiplied by SQRT( overflow threshold ) *> (12) Same as (8), but multiplied by SQRT( underflow threshold ) *> *> (13) Rectangular matrix with random entries chosen from (-1,1). *> (14) Same as (13), but multiplied by SQRT( overflow threshold ) *> (15) Same as (13), but multiplied by SQRT( underflow threshold ) *> *> Special case: *> (16) A bidiagonal matrix with random entries chosen from a *> logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each *> entry is e^x, where x is chosen uniformly on *> [ 2 log(ulp), -2 log(ulp) ] .) For *this* type: *> (a) ZGEBRD is not called to reduce it to bidiagonal form. *> (b) the bidiagonal is min(M,N) x min(M,N); if M<N, the *> matrix will be lower bidiagonal, otherwise upper. *> (c) only tests 5--8 and 14 are performed. *> *> A subset of the full set of matrix types may be selected through *> the logical array DOTYPE. *> \endverbatim * * Arguments: * ========== * *> \param[in] NSIZES *> \verbatim *> NSIZES is INTEGER *> The number of values of M and N contained in the vectors *> MVAL and NVAL. The matrix sizes are used in pairs (M,N). *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NM) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NTYPES *> \verbatim *> NTYPES is INTEGER *> The number of elements in DOTYPE. If it is zero, ZCHKBD *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrices are in A and B. *> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> \endverbatim *> *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix *> of type j will be generated. If NTYPES is smaller than the *> maximum number of types defined (PARAMETER MAXTYP), then *> types NTYPES+1 through MAXTYP will not be generated. If *> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through *> DOTYPE(NTYPES) will be ignored. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns in the "right-hand side" matrices X, Y, *> and Z, used in testing ZBDSQR. If NRHS = 0, then the *> operations on the right-hand side will not be tested. *> NRHS must be at least 0. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The values of ISEED are changed on exit, and can be *> used in the next call to ZCHKBD to continue the same random *> number sequence. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. Note that the *> expected value of the test ratios is O(1), so THRESH should *> be a reasonably small multiple of 1, e.g., 10 or 100. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,NMAX) *> where NMAX is the maximum value of N in NVAL. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,MMAX), *> where MMAX is the maximum value of M in MVAL. *> \endverbatim *> *> \param[out] BD *> \verbatim *> BD is DOUBLE PRECISION array, dimension *> (max(min(MVAL(j),NVAL(j)))) *> \endverbatim *> *> \param[out] BE *> \verbatim *> BE is DOUBLE PRECISION array, dimension *> (max(min(MVAL(j),NVAL(j)))) *> \endverbatim *> *> \param[out] S1 *> \verbatim *> S1 is DOUBLE PRECISION array, dimension *> (max(min(MVAL(j),NVAL(j)))) *> \endverbatim *> *> \param[out] S2 *> \verbatim *> S2 is DOUBLE PRECISION array, dimension *> (max(min(MVAL(j),NVAL(j)))) *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (LDX,NRHS) *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the arrays X, Y, and Z. *> LDX >= max(1,MMAX). *> \endverbatim *> *> \param[out] Y *> \verbatim *> Y is COMPLEX*16 array, dimension (LDX,NRHS) *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDX,NRHS) *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is COMPLEX*16 array, dimension (LDQ,MMAX) *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= max(1,MMAX). *> \endverbatim *> *> \param[out] PT *> \verbatim *> PT is COMPLEX*16 array, dimension (LDPT,NMAX) *> \endverbatim *> *> \param[in] LDPT *> \verbatim *> LDPT is INTEGER *> The leading dimension of the arrays PT, U, and V. *> LDPT >= max(1, max(min(MVAL(j),NVAL(j)))). *> \endverbatim *> *> \param[out] U *> \verbatim *> U is COMPLEX*16 array, dimension *> (LDPT,max(min(MVAL(j),NVAL(j)))) *> \endverbatim *> *> \param[out] VT *> \verbatim *> VT is COMPLEX*16 array, dimension *> (LDPT,max(min(MVAL(j),NVAL(j)))) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The number of entries in WORK. This must be at least *> 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all *> pairs (M,N)=(MM(j),NN(j)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension *> (5*max(min(M,N))) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some MM(j) < 0 *> -3: Some NN(j) < 0 *> -4: NTYPES < 0 *> -6: NRHS < 0 *> -8: THRESH < 0 *> -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). *> -17: LDB < 1 or LDB < MMAX. *> -21: LDQ < 1 or LDQ < MMAX. *> -23: LDP < 1 or LDP < MNMAX. *> -27: LWORK too small. *> If ZLATMR, CLATMS, ZGEBRD, ZUNGBR, or ZBDSQR, *> returns an error code, the *> absolute value of it is returned. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NTEST The number of tests performed, or which can *> be performed so far, for the current matrix. *> MMAX Largest value in NN. *> NMAX Largest value in NN. *> MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal *> matrix.) *> MNMAX The maximum value of MNMIN for j=1,...,NSIZES. *> NFAIL The number of tests which have exceeded THRESH *> COND, IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> RTOVFL, RTUNFL Square roots of the previous 2 values. *> ULP, ULPINV Finest relative precision and its inverse. *> *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS, $ ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX, $ Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK, $ RWORK, NOUT, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS, $ NSIZES, NTYPES DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ) DOUBLE PRECISION BD( * ), BE( * ), RWORK( * ), S1( * ), S2( * ) COMPLEX*16 A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ), $ U( LDPT, * ), VT( LDPT, * ), WORK( * ), $ X( LDX, * ), Y( LDX, * ), Z( LDX, * ) * .. * * ====================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO, HALF PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, $ HALF = 0.5D0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) INTEGER MAXTYP PARAMETER ( MAXTYP = 16 ) * .. * .. Local Scalars .. LOGICAL BADMM, BADNN, BIDIAG CHARACTER UPLO CHARACTER*3 PATH INTEGER I, IINFO, IMODE, ITYPE, J, JCOL, JSIZE, JTYPE, $ LOG2UI, M, MINWRK, MMAX, MNMAX, MNMIN, MQ, $ MTYPES, N, NFAIL, NMAX, NTEST DOUBLE PRECISION AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL, $ TEMP1, TEMP2, ULP, ULPINV, UNFL * .. * .. Local Arrays .. INTEGER IOLDSD( 4 ), IWORK( 1 ), KMAGN( MAXTYP ), $ KMODE( MAXTYP ), KTYPE( MAXTYP ) DOUBLE PRECISION DUMMA( 1 ), RESULT( 14 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLARND EXTERNAL DLAMCH, DLARND * .. * .. External Subroutines .. EXTERNAL ALASUM, DCOPY, DLAHD2, DSVDCH, XERBLA, ZBDSQR, $ ZBDT01, ZBDT02, ZBDT03, ZGEBRD, ZGEMM, ZLACPY, $ ZLASET, ZLATMR, ZLATMS, ZUNGBR, ZUNT01 * .. * .. Intrinsic Functions .. INTRINSIC ABS, EXP, INT, LOG, MAX, MIN, SQRT * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA KTYPE / 1, 2, 5*4, 5*6, 3*9, 10 / DATA KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3, 0 / DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0, $ 0, 0, 0 / * .. * .. Executable Statements .. * * Check for errors * INFO = 0 * BADMM = .FALSE. BADNN = .FALSE. MMAX = 1 NMAX = 1 MNMAX = 1 MINWRK = 1 DO 10 J = 1, NSIZES MMAX = MAX( MMAX, MVAL( J ) ) IF( MVAL( J ).LT.0 ) $ BADMM = .TRUE. NMAX = MAX( NMAX, NVAL( J ) ) IF( NVAL( J ).LT.0 ) $ BADNN = .TRUE. MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) ) MINWRK = MAX( MINWRK, 3*( MVAL( J )+NVAL( J ) ), $ MVAL( J )*( MVAL( J )+MAX( MVAL( J ), NVAL( J ), $ NRHS )+1 )+NVAL( J )*MIN( NVAL( J ), MVAL( J ) ) ) 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADMM ) THEN INFO = -2 ELSE IF( BADNN ) THEN INFO = -3 ELSE IF( NTYPES.LT.0 ) THEN INFO = -4 ELSE IF( NRHS.LT.0 ) THEN INFO = -6 ELSE IF( LDA.LT.MMAX ) THEN INFO = -11 ELSE IF( LDX.LT.MMAX ) THEN INFO = -17 ELSE IF( LDQ.LT.MMAX ) THEN INFO = -21 ELSE IF( LDPT.LT.MNMAX ) THEN INFO = -23 ELSE IF( MINWRK.GT.LWORK ) THEN INFO = -27 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZCHKBD', -INFO ) RETURN END IF * * Initialize constants * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'BD' NFAIL = 0 NTEST = 0 UNFL = DLAMCH( 'Safe minimum' ) OVFL = DLAMCH( 'Overflow' ) ULP = DLAMCH( 'Precision' ) ULPINV = ONE / ULP LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) ) RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) INFOT = 0 * * Loop over sizes, types * DO 180 JSIZE = 1, NSIZES M = MVAL( JSIZE ) N = NVAL( JSIZE ) MNMIN = MIN( M, N ) AMNINV = ONE / MAX( M, N, 1 ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 170 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 170 * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * DO 30 J = 1, 14 RESULT( J ) = -ONE 30 CONTINUE * UPLO = ' ' * * Compute "A" * * Control parameters: * * KMAGN KMODE KTYPE * =1 O(1) clustered 1 zero * =2 large clustered 2 identity * =3 small exponential (none) * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random symmetric, w/ eigenvalues * =6 nonsymmetric, w/ singular values * =7 random diagonal * =8 random symmetric * =9 random nonsymmetric * =10 random bidiagonal (log. distrib.) * IF( MTYPES.GT.MAXTYP ) $ GO TO 100 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*AMNINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*MAX( M, N )*ULPINV GO TO 70 * 70 CONTINUE * CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA ) IINFO = 0 COND = ULPINV * BIDIAG = .FALSE. IF( ITYPE.EQ.1 ) THEN * * Zero matrix * IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 80 JCOL = 1, MNMIN A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL ZLATMS( MNMIN, MNMIN, 'S', ISEED, 'N', RWORK, IMODE, $ COND, ANORM, 0, 0, 'N', A, LDA, WORK, $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Symmetric, eigenvalues specified * CALL ZLATMS( MNMIN, MNMIN, 'S', ISEED, 'S', RWORK, IMODE, $ COND, ANORM, M, N, 'N', A, LDA, WORK, $ IINFO ) * ELSE IF( ITYPE.EQ.6 ) THEN * * Nonsymmetric, singular values specified * CALL ZLATMS( M, N, 'S', ISEED, 'N', RWORK, IMODE, COND, $ ANORM, M, N, 'N', A, LDA, WORK, IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random entries * CALL ZLATMR( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, 6, ONE, $ CONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE, $ WORK( 2*MNMIN+1 ), 1, ONE, 'N', IWORK, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Symmetric, random entries * CALL ZLATMR( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, 6, ONE, $ CONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE, $ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * Nonsymmetric, random entries * CALL ZLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( MNMIN+1 ), 1, ONE, $ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.10 ) THEN * * Bidiagonal, random entries * TEMP1 = -TWO*LOG( ULP ) DO 90 J = 1, MNMIN BD( J ) = EXP( TEMP1*DLARND( 2, ISEED ) ) IF( J.LT.MNMIN ) $ BE( J ) = EXP( TEMP1*DLARND( 2, ISEED ) ) 90 CONTINUE * IINFO = 0 BIDIAG = .TRUE. IF( M.GE.N ) THEN UPLO = 'U' ELSE UPLO = 'L' END IF ELSE IINFO = 1 END IF * IF( IINFO.EQ.0 ) THEN * * Generate Right-Hand Side * IF( BIDIAG ) THEN CALL ZLATMR( MNMIN, NRHS, 'S', ISEED, 'N', WORK, 6, $ ONE, CONE, 'T', 'N', WORK( MNMIN+1 ), 1, $ ONE, WORK( 2*MNMIN+1 ), 1, ONE, 'N', $ IWORK, MNMIN, NRHS, ZERO, ONE, 'NO', Y, $ LDX, IWORK, IINFO ) ELSE CALL ZLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE, $ CONE, 'T', 'N', WORK( M+1 ), 1, ONE, $ WORK( 2*M+1 ), 1, ONE, 'N', IWORK, M, $ NRHS, ZERO, ONE, 'NO', X, LDX, IWORK, $ IINFO ) END IF END IF * * Error Exit * IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9998 )'Generator', IINFO, M, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) RETURN END IF * 100 CONTINUE * * Call ZGEBRD and ZUNGBR to compute B, Q, and P, do tests. * IF( .NOT.BIDIAG ) THEN * * Compute transformations to reduce A to bidiagonal form: * B := Q' * A * P. * CALL ZLACPY( ' ', M, N, A, LDA, Q, LDQ ) CALL ZGEBRD( M, N, Q, LDQ, BD, BE, WORK, WORK( MNMIN+1 ), $ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO ) * * Check error code from ZGEBRD. * IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9998 )'ZGEBRD', IINFO, M, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) RETURN END IF * CALL ZLACPY( ' ', M, N, Q, LDQ, PT, LDPT ) IF( M.GE.N ) THEN UPLO = 'U' ELSE UPLO = 'L' END IF * * Generate Q * MQ = M IF( NRHS.LE.0 ) $ MQ = MNMIN CALL ZUNGBR( 'Q', M, MQ, N, Q, LDQ, WORK, $ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO ) * * Check error code from ZUNGBR. * IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9998 )'ZUNGBR(Q)', IINFO, M, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) RETURN END IF * * Generate P' * CALL ZUNGBR( 'P', MNMIN, N, M, PT, LDPT, WORK( MNMIN+1 ), $ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO ) * * Check error code from ZUNGBR. * IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9998 )'ZUNGBR(P)', IINFO, M, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) RETURN END IF * * Apply Q' to an M by NRHS matrix X: Y := Q' * X. * CALL ZGEMM( 'Conjugate transpose', 'No transpose', M, $ NRHS, M, CONE, Q, LDQ, X, LDX, CZERO, Y, $ LDX ) * * Test 1: Check the decomposition A := Q * B * PT * 2: Check the orthogonality of Q * 3: Check the orthogonality of PT * CALL ZBDT01( M, N, 1, A, LDA, Q, LDQ, BD, BE, PT, LDPT, $ WORK, RWORK, RESULT( 1 ) ) CALL ZUNT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK, $ RWORK, RESULT( 2 ) ) CALL ZUNT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK, $ RWORK, RESULT( 3 ) ) END IF * * Use ZBDSQR to form the SVD of the bidiagonal matrix B: * B := U * S1 * VT, and compute Z = U' * Y. * CALL DCOPY( MNMIN, BD, 1, S1, 1 ) IF( MNMIN.GT.0 ) $ CALL DCOPY( MNMIN-1, BE, 1, RWORK, 1 ) CALL ZLACPY( ' ', M, NRHS, Y, LDX, Z, LDX ) CALL ZLASET( 'Full', MNMIN, MNMIN, CZERO, CONE, U, LDPT ) CALL ZLASET( 'Full', MNMIN, MNMIN, CZERO, CONE, VT, LDPT ) * CALL ZBDSQR( UPLO, MNMIN, MNMIN, MNMIN, NRHS, S1, RWORK, VT, $ LDPT, U, LDPT, Z, LDX, RWORK( MNMIN+1 ), $ IINFO ) * * Check error code from ZBDSQR. * IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9998 )'ZBDSQR(vects)', IINFO, M, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 4 ) = ULPINV GO TO 150 END IF END IF * * Use ZBDSQR to compute only the singular values of the * bidiagonal matrix B; U, VT, and Z should not be modified. * CALL DCOPY( MNMIN, BD, 1, S2, 1 ) IF( MNMIN.GT.0 ) $ CALL DCOPY( MNMIN-1, BE, 1, RWORK, 1 ) * CALL ZBDSQR( UPLO, MNMIN, 0, 0, 0, S2, RWORK, VT, LDPT, U, $ LDPT, Z, LDX, RWORK( MNMIN+1 ), IINFO ) * * Check error code from ZBDSQR. * IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9998 )'ZBDSQR(values)', IINFO, M, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 9 ) = ULPINV GO TO 150 END IF END IF * * Test 4: Check the decomposition B := U * S1 * VT * 5: Check the computation Z := U' * Y * 6: Check the orthogonality of U * 7: Check the orthogonality of VT * CALL ZBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT, $ WORK, RESULT( 4 ) ) CALL ZBDT02( MNMIN, NRHS, Y, LDX, Z, LDX, U, LDPT, WORK, $ RWORK, RESULT( 5 ) ) CALL ZUNT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK, $ RWORK, RESULT( 6 ) ) CALL ZUNT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK, $ RWORK, RESULT( 7 ) ) * * Test 8: Check that the singular values are sorted in * non-increasing order and are non-negative * RESULT( 8 ) = ZERO DO 110 I = 1, MNMIN - 1 IF( S1( I ).LT.S1( I+1 ) ) $ RESULT( 8 ) = ULPINV IF( S1( I ).LT.ZERO ) $ RESULT( 8 ) = ULPINV 110 CONTINUE IF( MNMIN.GE.1 ) THEN IF( S1( MNMIN ).LT.ZERO ) $ RESULT( 8 ) = ULPINV END IF * * Test 9: Compare ZBDSQR with and without singular vectors * TEMP2 = ZERO * DO 120 J = 1, MNMIN TEMP1 = ABS( S1( J )-S2( J ) ) / $ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ), $ ULP*MAX( ABS( S1( J ) ), ABS( S2( J ) ) ) ) TEMP2 = MAX( TEMP1, TEMP2 ) 120 CONTINUE * RESULT( 9 ) = TEMP2 * * Test 10: Sturm sequence test of singular values * Go up by factors of two until it succeeds * TEMP1 = THRESH*( HALF-ULP ) * DO 130 J = 0, LOG2UI CALL DSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO ) IF( IINFO.EQ.0 ) $ GO TO 140 TEMP1 = TEMP1*TWO 130 CONTINUE * 140 CONTINUE RESULT( 10 ) = TEMP1 * * Use ZBDSQR to form the decomposition A := (QU) S (VT PT) * from the bidiagonal form A := Q B PT. * IF( .NOT.BIDIAG ) THEN CALL DCOPY( MNMIN, BD, 1, S2, 1 ) IF( MNMIN.GT.0 ) $ CALL DCOPY( MNMIN-1, BE, 1, RWORK, 1 ) * CALL ZBDSQR( UPLO, MNMIN, N, M, NRHS, S2, RWORK, PT, $ LDPT, Q, LDQ, Y, LDX, RWORK( MNMIN+1 ), $ IINFO ) * * Test 11: Check the decomposition A := Q*U * S2 * VT*PT * 12: Check the computation Z := U' * Q' * X * 13: Check the orthogonality of Q*U * 14: Check the orthogonality of VT*PT * CALL ZBDT01( M, N, 0, A, LDA, Q, LDQ, S2, DUMMA, PT, $ LDPT, WORK, RWORK, RESULT( 11 ) ) CALL ZBDT02( M, NRHS, X, LDX, Y, LDX, Q, LDQ, WORK, $ RWORK, RESULT( 12 ) ) CALL ZUNT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK, $ RWORK, RESULT( 13 ) ) CALL ZUNT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK, $ RWORK, RESULT( 14 ) ) END IF * * End of Loop -- Check for RESULT(j) > THRESH * 150 CONTINUE DO 160 J = 1, 14 IF( RESULT( J ).GE.THRESH ) THEN IF( NFAIL.EQ.0 ) $ CALL DLAHD2( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )M, N, JTYPE, IOLDSD, J, $ RESULT( J ) NFAIL = NFAIL + 1 END IF 160 CONTINUE IF( .NOT.BIDIAG ) THEN NTEST = NTEST + 14 ELSE NTEST = NTEST + 5 END IF * 170 CONTINUE 180 CONTINUE * * Summary * CALL ALASUM( PATH, NOUT, NFAIL, NTEST, 0 ) * RETURN * * End of ZCHKBD * 9999 FORMAT( ' M=', I5, ', N=', I5, ', type ', I2, ', seed=', $ 4( I4, ',' ), ' test(', I2, ')=', G11.4 ) 9998 FORMAT( ' ZCHKBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=', $ I6, ', N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), $ I5, ')' ) * END