numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/zchkgg.f | 45323B | -rw-r--r-- |
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
*> \brief \b ZCHKGG * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1, * S2, P1, P2, U, LDU, V, Q, Z, ALPHA1, BETA1, * ALPHA3, BETA3, EVECTL, EVECTR, WORK, LWORK, * RWORK, LLWORK, RESULT, INFO ) * * .. Scalar Arguments .. * LOGICAL TSTDIF * INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES * DOUBLE PRECISION THRESH, THRSHN * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ), LLWORK( * ) * INTEGER ISEED( 4 ), NN( * ) * DOUBLE PRECISION RESULT( 15 ), RWORK( * ) * COMPLEX*16 A( LDA, * ), ALPHA1( * ), ALPHA3( * ), * $ B( LDA, * ), BETA1( * ), BETA3( * ), * $ EVECTL( LDU, * ), EVECTR( LDU, * ), * $ H( LDA, * ), P1( LDA, * ), P2( LDA, * ), * $ Q( LDU, * ), S1( LDA, * ), S2( LDA, * ), * $ T( LDA, * ), U( LDU, * ), V( LDU, * ), * $ WORK( * ), Z( LDU, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKGG checks the nonsymmetric generalized eigenvalue problem *> routines. *> H H H *> ZGGHRD factors A and B as U H V and U T V , where means conjugate *> transpose, H is hessenberg, T is triangular and U and V are unitary. *> *> H H *> ZHGEQZ factors H and T as Q S Z and Q P Z , where P and S are upper *> triangular and Q and Z are unitary. It also computes the generalized *> eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)), where *> alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus, w(j) = alpha(j)/beta(j) *> is a root of the generalized eigenvalue problem *> *> det( A - w(j) B ) = 0 *> *> and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent *> problem *> *> det( m(j) A - B ) = 0 *> *> ZTGEVC computes the matrix L of left eigenvectors and the matrix R *> of right eigenvectors for the matrix pair ( S, P ). In the *> description below, l and r are left and right eigenvectors *> corresponding to the generalized eigenvalues (alpha,beta). *> *> When ZCHKGG is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix will be generated and used *> to test the nonsymmetric eigenroutines. For each matrix, 13 *> tests will be performed. The first twelve "test ratios" should be *> small -- O(1). They will be compared with the threshold THRESH: *> *> H *> (1) | A - U H V | / ( |A| n ulp ) *> *> H *> (2) | B - U T V | / ( |B| n ulp ) *> *> H *> (3) | I - UU | / ( n ulp ) *> *> H *> (4) | I - VV | / ( n ulp ) *> *> H *> (5) | H - Q S Z | / ( |H| n ulp ) *> *> H *> (6) | T - Q P Z | / ( |T| n ulp ) *> *> H *> (7) | I - QQ | / ( n ulp ) *> *> H *> (8) | I - ZZ | / ( n ulp ) *> *> (9) max over all left eigenvalue/-vector pairs (beta/alpha,l) of *> H *> | (beta A - alpha B) l | / ( ulp max( |beta A|, |alpha B| ) ) *> *> (10) max over all left eigenvalue/-vector pairs (beta/alpha,l') of *> H *> | (beta H - alpha T) l' | / ( ulp max( |beta H|, |alpha T| ) ) *> *> where the eigenvectors l' are the result of passing Q to *> DTGEVC and back transforming (JOB='B'). *> *> (11) max over all right eigenvalue/-vector pairs (beta/alpha,r) of *> *> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) ) *> *> (12) max over all right eigenvalue/-vector pairs (beta/alpha,r') of *> *> | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) ) *> *> where the eigenvectors r' are the result of passing Z to *> DTGEVC and back transforming (JOB='B'). *> *> The last three test ratios will usually be small, but there is no *> mathematical requirement that they be so. They are therefore *> compared with THRESH only if TSTDIF is .TRUE. *> *> (13) | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp ) *> *> (14) | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp ) *> *> (15) max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| , *> |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp *> *> In addition, the normalization of L and R are checked, and compared *> with the threshold THRSHN. *> *> Test Matrices *> ---- -------- *> *> The sizes of the test matrices are specified by an array *> NN(1:NSIZES); the value of each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if *> DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) ( 0, 0 ) (a pair of zero matrices) *> *> (2) ( I, 0 ) (an identity and a zero matrix) *> *> (3) ( 0, I ) (an identity and a zero matrix) *> *> (4) ( I, I ) (a pair of identity matrices) *> *> t t *> (5) ( J , J ) (a pair of transposed Jordan blocks) *> *> t ( I 0 ) *> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) *> ( 0 I ) ( 0 J ) *> and I is a k x k identity and J a (k+1)x(k+1) *> Jordan block; k=(N-1)/2 *> *> (7) ( D, I ) where D is P*D1, P is a random unitary diagonal *> matrix (i.e., with random magnitude 1 entries *> on the diagonal), and D1=diag( 0, 1,..., N-1 ) *> (i.e., a diagonal matrix with D1(1,1)=0, *> D1(2,2)=1, ..., D1(N,N)=N-1.) *> (8) ( I, D ) *> *> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big *> *> (10) ( small*D, big*I ) *> *> (11) ( big*I, small*D ) *> *> (12) ( small*I, big*D ) *> *> (13) ( big*D, big*I ) *> *> (14) ( small*D, small*I ) *> *> (15) ( D1, D2 ) where D1=P*diag( 0, 0, 1, ..., N-3, 0 ) and *> D2=Q*diag( 0, N-3, N-4,..., 1, 0, 0 ), and *> P and Q are random unitary diagonal matrices. *> t t *> (16) U ( J , J ) V where U and V are random unitary matrices. *> *> (17) U ( T1, T2 ) V where T1 and T2 are upper triangular matrices *> with random O(1) entries above the diagonal *> and diagonal entries diag(T1) = *> P*( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = *> Q*( 0, N-3, N-4,..., 1, 0, 0 ) *> *> (18) U ( T1, T2 ) V diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) *> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) *> s = machine precision. *> *> (19) U ( T1, T2 ) V diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) *> *> N-5 *> (20) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) *> *> (21) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) *> where r1,..., r(N-4) are random. *> *> (22) U ( big*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) *> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) *> *> (23) U ( small*T1, big*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) *> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) *> *> (24) U ( small*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) *> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) *> *> (25) U ( big*T1, big*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) *> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) *> *> (26) U ( T1, T2 ) V where T1 and T2 are random upper-triangular *> matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] NSIZES *> \verbatim *> NSIZES is INTEGER *> The number of sizes of matrices to use. If it is zero, *> ZCHKGG does nothing. It must be at least zero. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> \endverbatim *> *> \param[in] NTYPES *> \verbatim *> NTYPES is INTEGER *> The number of elements in DOTYPE. If it is zero, ZCHKGG *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> \endverbatim *> *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to ZCHKGG to continue the same random number *> sequence. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] TSTDIF *> \verbatim *> TSTDIF is LOGICAL *> Specifies whether test ratios 13-15 will be computed and *> compared with THRESH. *> = .FALSE.: Only test ratios 1-12 will be computed and tested. *> Ratios 13-15 will be set to zero. *> = .TRUE.: All the test ratios 1-15 will be computed and *> tested. *> \endverbatim *> *> \param[in] THRSHN *> \verbatim *> THRSHN is DOUBLE PRECISION *> Threshold for reporting eigenvector normalization error. *> If the normalization of any eigenvector differs from 1 by *> more than THRSHN*ulp, then a special error message will be *> printed. (This is handled separately from the other tests, *> since only a compiler or programming error should cause an *> error message, at least if THRSHN is at least 5--10.) *> \endverbatim *> *> \param[in] NOUNIT *> \verbatim *> NOUNIT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, max(NN)) *> Used to hold the original A matrix. Used as input only *> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and *> DOTYPE(MAXTYP+1)=.TRUE. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A, B, H, T, S1, P1, S2, and P2. *> It must be at least 1 and at least max( NN ). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDA, max(NN)) *> Used to hold the original B matrix. Used as input only *> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and *> DOTYPE(MAXTYP+1)=.TRUE. *> \endverbatim *> *> \param[out] H *> \verbatim *> H is COMPLEX*16 array, dimension (LDA, max(NN)) *> The upper Hessenberg matrix computed from A by ZGGHRD. *> \endverbatim *> *> \param[out] T *> \verbatim *> T is COMPLEX*16 array, dimension (LDA, max(NN)) *> The upper triangular matrix computed from B by ZGGHRD. *> \endverbatim *> *> \param[out] S1 *> \verbatim *> S1 is COMPLEX*16 array, dimension (LDA, max(NN)) *> The Schur (upper triangular) matrix computed from H by ZHGEQZ *> when Q and Z are also computed. *> \endverbatim *> *> \param[out] S2 *> \verbatim *> S2 is COMPLEX*16 array, dimension (LDA, max(NN)) *> The Schur (upper triangular) matrix computed from H by ZHGEQZ *> when Q and Z are not computed. *> \endverbatim *> *> \param[out] P1 *> \verbatim *> P1 is COMPLEX*16 array, dimension (LDA, max(NN)) *> The upper triangular matrix computed from T by ZHGEQZ *> when Q and Z are also computed. *> \endverbatim *> *> \param[out] P2 *> \verbatim *> P2 is COMPLEX*16 array, dimension (LDA, max(NN)) *> The upper triangular matrix computed from T by ZHGEQZ *> when Q and Z are not computed. *> \endverbatim *> *> \param[out] U *> \verbatim *> U is COMPLEX*16 array, dimension (LDU, max(NN)) *> The (left) unitary matrix computed by ZGGHRD. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of U, V, Q, Z, EVECTL, and EVEZTR. It *> must be at least 1 and at least max( NN ). *> \endverbatim *> *> \param[out] V *> \verbatim *> V is COMPLEX*16 array, dimension (LDU, max(NN)) *> The (right) unitary matrix computed by ZGGHRD. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is COMPLEX*16 array, dimension (LDU, max(NN)) *> The (left) unitary matrix computed by ZHGEQZ. *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDU, max(NN)) *> The (left) unitary matrix computed by ZHGEQZ. *> \endverbatim *> *> \param[out] ALPHA1 *> \verbatim *> ALPHA1 is COMPLEX*16 array, dimension (max(NN)) *> \endverbatim *> *> \param[out] BETA1 *> \verbatim *> BETA1 is COMPLEX*16 array, dimension (max(NN)) *> The generalized eigenvalues of (A,B) computed by ZHGEQZ *> when Q, Z, and the full Schur matrices are computed. *> \endverbatim *> *> \param[out] ALPHA3 *> \verbatim *> ALPHA3 is COMPLEX*16 array, dimension (max(NN)) *> \endverbatim *> *> \param[out] BETA3 *> \verbatim *> BETA3 is COMPLEX*16 array, dimension (max(NN)) *> The generalized eigenvalues of (A,B) computed by ZHGEQZ *> when neither Q, Z, nor the Schur matrices are computed. *> \endverbatim *> *> \param[out] EVECTL *> \verbatim *> EVECTL is COMPLEX*16 array, dimension (LDU, max(NN)) *> The (lower triangular) left eigenvector matrix for the *> matrices in S1 and P1. *> \endverbatim *> *> \param[out] EVECTR *> \verbatim *> EVECTR is COMPLEX*16 array, dimension (LDU, max(NN)) *> The (upper triangular) right eigenvector matrix for the *> matrices in S1 and P1. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The number of entries in WORK. This must be at least *> max( 4*N, 2 * N**2, 1 ), for all N=NN(j). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (2*max(NN)) *> \endverbatim *> *> \param[out] LLWORK *> \verbatim *> LLWORK is LOGICAL array, dimension (max(NN)) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (15) *> The values computed by the tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: A routine returned an error code. INFO is the *> absolute value of the INFO value returned. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1, $ S2, P1, P2, U, LDU, V, Q, Z, ALPHA1, BETA1, $ ALPHA3, BETA3, EVECTL, EVECTR, WORK, LWORK, $ RWORK, LLWORK, RESULT, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTDIF INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES DOUBLE PRECISION THRESH, THRSHN * .. * .. Array Arguments .. LOGICAL DOTYPE( * ), LLWORK( * ) INTEGER ISEED( 4 ), NN( * ) DOUBLE PRECISION RESULT( 15 ), RWORK( * ) COMPLEX*16 A( LDA, * ), ALPHA1( * ), ALPHA3( * ), $ B( LDA, * ), BETA1( * ), BETA3( * ), $ EVECTL( LDU, * ), EVECTR( LDU, * ), $ H( LDA, * ), P1( LDA, * ), P2( LDA, * ), $ Q( LDU, * ), S1( LDA, * ), S2( LDA, * ), $ T( LDA, * ), U( LDU, * ), V( LDU, * ), $ WORK( * ), Z( LDU, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) INTEGER MAXTYP PARAMETER ( MAXTYP = 26 ) * .. * .. Local Scalars .. LOGICAL BADNN INTEGER I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE, $ LWKOPT, MTYPES, N, N1, NERRS, NMATS, NMAX, $ NTEST, NTESTT DOUBLE PRECISION ANORM, BNORM, SAFMAX, SAFMIN, TEMP1, TEMP2, $ ULP, ULPINV COMPLEX*16 CTEMP * .. * .. Local Arrays .. LOGICAL LASIGN( MAXTYP ), LBSIGN( MAXTYP ) INTEGER IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ), $ KATYPE( MAXTYP ), KAZERO( MAXTYP ), $ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ), $ KBZERO( MAXTYP ), KCLASS( MAXTYP ), $ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 ) DOUBLE PRECISION DUMMA( 4 ), RMAGN( 0: 3 ) COMPLEX*16 CDUMMA( 4 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE COMPLEX*16 ZLARND EXTERNAL DLAMCH, ZLANGE, ZLARND * .. * .. External Subroutines .. EXTERNAL DLASUM, XERBLA, ZGEQR2, ZGET51, ZGET52, ZGGHRD, $ ZHGEQZ, ZLACPY, ZLARFG, ZLASET, ZLATM4, ZTGEVC, $ ZUNM2R * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCONJG, MAX, MIN, SIGN * .. * .. Data statements .. DATA KCLASS / 15*1, 10*2, 1*3 / DATA KZ1 / 0, 1, 2, 1, 3, 3 / DATA KZ2 / 0, 0, 1, 2, 1, 1 / DATA KADD / 0, 0, 0, 0, 3, 2 / DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4, $ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 / DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4, $ 1, 1, -4, 2, -4, 8*8, 0 / DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3, $ 4*5, 4*3, 1 / DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4, $ 4*6, 4*4, 1 / DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3, $ 2, 1 / DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3, $ 2, 1 / DATA KTRIAN / 16*0, 10*1 / DATA LASIGN / 6*.FALSE., .TRUE., .FALSE., 2*.TRUE., $ 2*.FALSE., 3*.TRUE., .FALSE., .TRUE., $ 3*.FALSE., 5*.TRUE., .FALSE. / DATA LBSIGN / 7*.FALSE., .TRUE., 2*.FALSE., $ 2*.TRUE., 2*.FALSE., .TRUE., .FALSE., .TRUE., $ 9*.FALSE. / * .. * .. Executable Statements .. * * Check for errors * INFO = 0 * BADNN = .FALSE. NMAX = 1 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * LWKOPT = MAX( 2*NMAX*NMAX, 4*NMAX, 1 ) * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -6 ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN INFO = -10 ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN INFO = -19 ELSE IF( LWKOPT.GT.LWORK ) THEN INFO = -30 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZCHKGG', -INFO ) RETURN END IF * * Quick return if possible * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * SAFMIN = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) SAFMIN = SAFMIN / ULP SAFMAX = ONE / SAFMIN ULPINV = ONE / ULP * * The values RMAGN(2:3) depend on N, see below. * RMAGN( 0 ) = ZERO RMAGN( 1 ) = ONE * * Loop over sizes, types * NTESTT = 0 NERRS = 0 NMATS = 0 * DO 240 JSIZE = 1, NSIZES N = NN( JSIZE ) N1 = MAX( 1, N ) RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 ) RMAGN( 3 ) = SAFMIN*ULPINV*N1 * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 230 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 230 NMATS = NMATS + 1 NTEST = 0 * * Save ISEED in case of an error. * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * * Initialize RESULT * DO 30 J = 1, 15 RESULT( J ) = ZERO 30 CONTINUE * * Compute A and B * * Description of control parameters: * * KZLASS: =1 means w/o rotation, =2 means w/ rotation, * =3 means random. * KATYPE: the "type" to be passed to ZLATM4 for computing A. * KAZERO: the pattern of zeros on the diagonal for A: * =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ), * =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ), * =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of * non-zero entries.) * KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1), * =2: large, =3: small. * LASIGN: .TRUE. if the diagonal elements of A are to be * multiplied by a random magnitude 1 number. * KBTYPE, KBZERO, KBMAGN, LBSIGN: the same, but for B. * KTRIAN: =0: don't fill in the upper triangle, =1: do. * KZ1, KZ2, KADD: used to implement KAZERO and KBZERO. * RMAGN: used to implement KAMAGN and KBMAGN. * IF( MTYPES.GT.MAXTYP ) $ GO TO 110 IINFO = 0 IF( KCLASS( JTYPE ).LT.3 ) THEN * * Generate A (w/o rotation) * IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN IN = 2*( ( N-1 ) / 2 ) + 1 IF( IN.NE.N ) $ CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA ) ELSE IN = N END IF CALL ZLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ), $ KZ2( KAZERO( JTYPE ) ), LASIGN( JTYPE ), $ RMAGN( KAMAGN( JTYPE ) ), ULP, $ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 4, $ ISEED, A, LDA ) IADD = KADD( KAZERO( JTYPE ) ) IF( IADD.GT.0 .AND. IADD.LE.N ) $ A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) ) * * Generate B (w/o rotation) * IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN IN = 2*( ( N-1 ) / 2 ) + 1 IF( IN.NE.N ) $ CALL ZLASET( 'Full', N, N, CZERO, CZERO, B, LDA ) ELSE IN = N END IF CALL ZLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ), $ KZ2( KBZERO( JTYPE ) ), LBSIGN( JTYPE ), $ RMAGN( KBMAGN( JTYPE ) ), ONE, $ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 4, $ ISEED, B, LDA ) IADD = KADD( KBZERO( JTYPE ) ) IF( IADD.NE.0 ) $ B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) ) * IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN * * Include rotations * * Generate U, V as Householder transformations times a * diagonal matrix. (Note that ZLARFG makes U(j,j) and * V(j,j) real.) * DO 50 JC = 1, N - 1 DO 40 JR = JC, N U( JR, JC ) = ZLARND( 3, ISEED ) V( JR, JC ) = ZLARND( 3, ISEED ) 40 CONTINUE CALL ZLARFG( N+1-JC, U( JC, JC ), U( JC+1, JC ), 1, $ WORK( JC ) ) WORK( 2*N+JC ) = SIGN( ONE, DBLE( U( JC, JC ) ) ) U( JC, JC ) = CONE CALL ZLARFG( N+1-JC, V( JC, JC ), V( JC+1, JC ), 1, $ WORK( N+JC ) ) WORK( 3*N+JC ) = SIGN( ONE, DBLE( V( JC, JC ) ) ) V( JC, JC ) = CONE 50 CONTINUE CTEMP = ZLARND( 3, ISEED ) U( N, N ) = CONE WORK( N ) = CZERO WORK( 3*N ) = CTEMP / ABS( CTEMP ) CTEMP = ZLARND( 3, ISEED ) V( N, N ) = CONE WORK( 2*N ) = CZERO WORK( 4*N ) = CTEMP / ABS( CTEMP ) * * Apply the diagonal matrices * DO 70 JC = 1, N DO 60 JR = 1, N A( JR, JC ) = WORK( 2*N+JR )* $ DCONJG( WORK( 3*N+JC ) )* $ A( JR, JC ) B( JR, JC ) = WORK( 2*N+JR )* $ DCONJG( WORK( 3*N+JC ) )* $ B( JR, JC ) 60 CONTINUE 70 CONTINUE CALL ZUNM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, A, $ LDA, WORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) $ GO TO 100 CALL ZUNM2R( 'R', 'C', N, N, N-1, V, LDU, WORK( N+1 ), $ A, LDA, WORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) $ GO TO 100 CALL ZUNM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, B, $ LDA, WORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) $ GO TO 100 CALL ZUNM2R( 'R', 'C', N, N, N-1, V, LDU, WORK( N+1 ), $ B, LDA, WORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) $ GO TO 100 END IF ELSE * * Random matrices * DO 90 JC = 1, N DO 80 JR = 1, N A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )* $ ZLARND( 4, ISEED ) B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )* $ ZLARND( 4, ISEED ) 80 CONTINUE 90 CONTINUE END IF * ANORM = ZLANGE( '1', N, N, A, LDA, RWORK ) BNORM = ZLANGE( '1', N, N, B, LDA, RWORK ) * 100 CONTINUE * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 110 CONTINUE * * Call ZGEQR2, ZUNM2R, and ZGGHRD to compute H, T, U, and V * CALL ZLACPY( ' ', N, N, A, LDA, H, LDA ) CALL ZLACPY( ' ', N, N, B, LDA, T, LDA ) NTEST = 1 RESULT( 1 ) = ULPINV * CALL ZGEQR2( N, N, T, LDA, WORK, WORK( N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZGEQR2', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * CALL ZUNM2R( 'L', 'C', N, N, N, T, LDA, WORK, H, LDA, $ WORK( N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZUNM2R', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * CALL ZLASET( 'Full', N, N, CZERO, CONE, U, LDU ) CALL ZUNM2R( 'R', 'N', N, N, N, T, LDA, WORK, U, LDU, $ WORK( N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZUNM2R', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * CALL ZGGHRD( 'V', 'I', N, 1, N, H, LDA, T, LDA, U, LDU, V, $ LDU, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZGGHRD', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF NTEST = 4 * * Do tests 1--4 * CALL ZGET51( 1, N, A, LDA, H, LDA, U, LDU, V, LDU, WORK, $ RWORK, RESULT( 1 ) ) CALL ZGET51( 1, N, B, LDA, T, LDA, U, LDU, V, LDU, WORK, $ RWORK, RESULT( 2 ) ) CALL ZGET51( 3, N, B, LDA, T, LDA, U, LDU, U, LDU, WORK, $ RWORK, RESULT( 3 ) ) CALL ZGET51( 3, N, B, LDA, T, LDA, V, LDU, V, LDU, WORK, $ RWORK, RESULT( 4 ) ) * * Call ZHGEQZ to compute S1, P1, S2, P2, Q, and Z, do tests. * * Compute T1 and UZ * * Eigenvalues only * CALL ZLACPY( ' ', N, N, H, LDA, S2, LDA ) CALL ZLACPY( ' ', N, N, T, LDA, P2, LDA ) NTEST = 5 RESULT( 5 ) = ULPINV * CALL ZHGEQZ( 'E', 'N', 'N', N, 1, N, S2, LDA, P2, LDA, $ ALPHA3, BETA3, Q, LDU, Z, LDU, WORK, LWORK, $ RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHGEQZ(E)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * * Eigenvalues and Full Schur Form * CALL ZLACPY( ' ', N, N, H, LDA, S2, LDA ) CALL ZLACPY( ' ', N, N, T, LDA, P2, LDA ) * CALL ZHGEQZ( 'S', 'N', 'N', N, 1, N, S2, LDA, P2, LDA, $ ALPHA1, BETA1, Q, LDU, Z, LDU, WORK, LWORK, $ RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHGEQZ(S)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * * Eigenvalues, Schur Form, and Schur Vectors * CALL ZLACPY( ' ', N, N, H, LDA, S1, LDA ) CALL ZLACPY( ' ', N, N, T, LDA, P1, LDA ) * CALL ZHGEQZ( 'S', 'I', 'I', N, 1, N, S1, LDA, P1, LDA, $ ALPHA1, BETA1, Q, LDU, Z, LDU, WORK, LWORK, $ RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHGEQZ(V)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * NTEST = 8 * * Do Tests 5--8 * CALL ZGET51( 1, N, H, LDA, S1, LDA, Q, LDU, Z, LDU, WORK, $ RWORK, RESULT( 5 ) ) CALL ZGET51( 1, N, T, LDA, P1, LDA, Q, LDU, Z, LDU, WORK, $ RWORK, RESULT( 6 ) ) CALL ZGET51( 3, N, T, LDA, P1, LDA, Q, LDU, Q, LDU, WORK, $ RWORK, RESULT( 7 ) ) CALL ZGET51( 3, N, T, LDA, P1, LDA, Z, LDU, Z, LDU, WORK, $ RWORK, RESULT( 8 ) ) * * Compute the Left and Right Eigenvectors of (S1,P1) * * 9: Compute the left eigenvector Matrix without * back transforming: * NTEST = 9 RESULT( 9 ) = ULPINV * * To test "SELECT" option, compute half of the eigenvectors * in one call, and half in another * I1 = N / 2 DO 120 J = 1, I1 LLWORK( J ) = .TRUE. 120 CONTINUE DO 130 J = I1 + 1, N LLWORK( J ) = .FALSE. 130 CONTINUE * CALL ZTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA, EVECTL, $ LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(L,S1)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * I1 = IN DO 140 J = 1, I1 LLWORK( J ) = .FALSE. 140 CONTINUE DO 150 J = I1 + 1, N LLWORK( J ) = .TRUE. 150 CONTINUE * CALL ZTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA, $ EVECTL( 1, I1+1 ), LDU, CDUMMA, LDU, N, IN, $ WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(L,S2)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * CALL ZGET52( .TRUE., N, S1, LDA, P1, LDA, EVECTL, LDU, $ ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) ) RESULT( 9 ) = DUMMA( 1 ) IF( DUMMA( 2 ).GT.THRSHN ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'ZTGEVC(HOWMNY=S)', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF * * 10: Compute the left eigenvector Matrix with * back transforming: * NTEST = 10 RESULT( 10 ) = ULPINV CALL ZLACPY( 'F', N, N, Q, LDU, EVECTL, LDU ) CALL ZTGEVC( 'L', 'B', LLWORK, N, S1, LDA, P1, LDA, EVECTL, $ LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(L,B)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * CALL ZGET52( .TRUE., N, H, LDA, T, LDA, EVECTL, LDU, ALPHA1, $ BETA1, WORK, RWORK, DUMMA( 1 ) ) RESULT( 10 ) = DUMMA( 1 ) IF( DUMMA( 2 ).GT.THRSHN ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'ZTGEVC(HOWMNY=B)', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF * * 11: Compute the right eigenvector Matrix without * back transforming: * NTEST = 11 RESULT( 11 ) = ULPINV * * To test "SELECT" option, compute half of the eigenvectors * in one call, and half in another * I1 = N / 2 DO 160 J = 1, I1 LLWORK( J ) = .TRUE. 160 CONTINUE DO 170 J = I1 + 1, N LLWORK( J ) = .FALSE. 170 CONTINUE * CALL ZTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, CDUMMA, $ LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(R,S1)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * I1 = IN DO 180 J = 1, I1 LLWORK( J ) = .FALSE. 180 CONTINUE DO 190 J = I1 + 1, N LLWORK( J ) = .TRUE. 190 CONTINUE * CALL ZTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, CDUMMA, $ LDU, EVECTR( 1, I1+1 ), LDU, N, IN, WORK, $ RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(R,S2)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * CALL ZGET52( .FALSE., N, S1, LDA, P1, LDA, EVECTR, LDU, $ ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) ) RESULT( 11 ) = DUMMA( 1 ) IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'ZTGEVC(HOWMNY=S)', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF * * 12: Compute the right eigenvector Matrix with * back transforming: * NTEST = 12 RESULT( 12 ) = ULPINV CALL ZLACPY( 'F', N, N, Z, LDU, EVECTR, LDU ) CALL ZTGEVC( 'R', 'B', LLWORK, N, S1, LDA, P1, LDA, CDUMMA, $ LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(R,B)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 210 END IF * CALL ZGET52( .FALSE., N, H, LDA, T, LDA, EVECTR, LDU, $ ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) ) RESULT( 12 ) = DUMMA( 1 ) IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'ZTGEVC(HOWMNY=B)', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF * * Tests 13--15 are done only on request * IF( TSTDIF ) THEN * * Do Tests 13--14 * CALL ZGET51( 2, N, S1, LDA, S2, LDA, Q, LDU, Z, LDU, $ WORK, RWORK, RESULT( 13 ) ) CALL ZGET51( 2, N, P1, LDA, P2, LDA, Q, LDU, Z, LDU, $ WORK, RWORK, RESULT( 14 ) ) * * Do Test 15 * TEMP1 = ZERO TEMP2 = ZERO DO 200 J = 1, N TEMP1 = MAX( TEMP1, ABS( ALPHA1( J )-ALPHA3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( BETA1( J )-BETA3( J ) ) ) 200 CONTINUE * TEMP1 = TEMP1 / MAX( SAFMIN, ULP*MAX( TEMP1, ANORM ) ) TEMP2 = TEMP2 / MAX( SAFMIN, ULP*MAX( TEMP2, BNORM ) ) RESULT( 15 ) = MAX( TEMP1, TEMP2 ) NTEST = 15 ELSE RESULT( 13 ) = ZERO RESULT( 14 ) = ZERO RESULT( 15 ) = ZERO NTEST = 12 END IF * * End of Loop -- Check for RESULT(j) > THRESH * 210 CONTINUE * NTESTT = NTESTT + NTEST * * Print out tests which fail. * DO 220 JR = 1, NTEST IF( RESULT( JR ).GE.THRESH ) THEN * * If this is the first test to fail, * print a header to the data file. * IF( NERRS.EQ.0 ) THEN WRITE( NOUNIT, FMT = 9997 )'ZGG' * * Matrix types * WRITE( NOUNIT, FMT = 9996 ) WRITE( NOUNIT, FMT = 9995 ) WRITE( NOUNIT, FMT = 9994 )'Unitary' * * Tests performed * WRITE( NOUNIT, FMT = 9993 )'unitary', '*', $ 'conjugate transpose', ( '*', J = 1, 10 ) * END IF NERRS = NERRS + 1 IF( RESULT( JR ).LT.10000.0D0 ) THEN WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR, $ RESULT( JR ) ELSE WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR, $ RESULT( JR ) END IF END IF 220 CONTINUE * 230 CONTINUE 240 CONTINUE * * Summary * CALL DLASUM( 'ZGG', NOUNIT, NERRS, NTESTT ) RETURN * 9999 FORMAT( ' ZCHKGG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * 9998 FORMAT( ' ZCHKGG: ', A, ' Eigenvectors from ', A, ' incorrectly ', $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X, $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, $ ')' ) * 9997 FORMAT( 1X, A3, ' -- Complex Generalized eigenvalue problem' ) * 9996 FORMAT( ' Matrix types (see ZCHKGG for details): ' ) * 9995 FORMAT( ' Special Matrices:', 23X, $ '(J''=transposed Jordan block)', $ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ', $ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ', $ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I', $ ') 11=(large*I, small*D) 13=(large*D, large*I)', / $ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ', $ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' ) 9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:', $ / ' 16=Transposed Jordan Blocks 19=geometric ', $ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ', $ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ', $ 'alpha, beta=0,1 21=random alpha, beta=0,1', $ / ' Large & Small Matrices:', / ' 22=(large, small) ', $ '23=(small,large) 24=(small,small) 25=(large,large)', $ / ' 26=random O(1) matrices.' ) * 9993 FORMAT( / ' Tests performed: (H is Hessenberg, S is Schur, B, ', $ 'T, P are triangular,', / 20X, 'U, V, Q, and Z are ', A, $ ', l and r are the', / 20X, $ 'appropriate left and right eigenvectors, resp., a is', $ / 20X, 'alpha, b is beta, and ', A, ' means ', A, '.)', $ / ' 1 = | A - U H V', A, $ ' | / ( |A| n ulp ) 2 = | B - U T V', A, $ ' | / ( |B| n ulp )', / ' 3 = | I - UU', A, $ ' | / ( n ulp ) 4 = | I - VV', A, $ ' | / ( n ulp )', / ' 5 = | H - Q S Z', A, $ ' | / ( |H| n ulp )', 6X, '6 = | T - Q P Z', A, $ ' | / ( |T| n ulp )', / ' 7 = | I - QQ', A, $ ' | / ( n ulp ) 8 = | I - ZZ', A, $ ' | / ( n ulp )', / ' 9 = max | ( b S - a P )', A, $ ' l | / const. 10 = max | ( b H - a T )', A, $ ' l | / const.', / $ ' 11= max | ( b S - a P ) r | / const. 12 = max | ( b H', $ ' - a T ) r | / const.', / 1X ) * 9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=', $ 4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 ) 9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=', $ 4( I4, ',' ), ' result ', I2, ' is', 1P, D10.3 ) * * End of ZCHKGG * END