numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/zchkgk.f | 7155B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
*> \brief \b ZCHKGK * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKGK( NIN, NOUT ) * * .. Scalar Arguments .. * INTEGER NIN, NOUT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKGK tests ZGGBAK, a routine for backward balancing of *> a matrix pair (A, B). *> \endverbatim * * Arguments: * ========== * *> \param[in] NIN *> \verbatim *> NIN is INTEGER *> The logical unit number for input. NIN > 0. *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The logical unit number for output. NOUT > 0. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZCHKGK( NIN, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER NIN, NOUT * .. * * ===================================================================== * * .. Parameters .. INTEGER LDA, LDB, LDVL, LDVR PARAMETER ( LDA = 50, LDB = 50, LDVL = 50, LDVR = 50 ) INTEGER LDE, LDF, LDWORK, LRWORK PARAMETER ( LDE = 50, LDF = 50, LDWORK = 50, $ LRWORK = 6*50 ) DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, IHI, ILO, INFO, J, KNT, M, N, NINFO DOUBLE PRECISION ANORM, BNORM, EPS, RMAX, VMAX COMPLEX*16 CDUM * .. * .. Local Arrays .. INTEGER LMAX( 4 ) DOUBLE PRECISION LSCALE( LDA ), RSCALE( LDA ), RWORK( LRWORK ) COMPLEX*16 A( LDA, LDA ), AF( LDA, LDA ), B( LDB, LDB ), $ BF( LDB, LDB ), E( LDE, LDE ), F( LDF, LDF ), $ VL( LDVL, LDVL ), VLF( LDVL, LDVL ), $ VR( LDVR, LDVR ), VRF( LDVR, LDVR ), $ WORK( LDWORK, LDWORK ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL DLAMCH, ZLANGE * .. * .. External Subroutines .. EXTERNAL ZGEMM, ZGGBAK, ZGGBAL, ZLACPY * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DIMAG, MAX * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) * .. * .. Executable Statements .. * LMAX( 1 ) = 0 LMAX( 2 ) = 0 LMAX( 3 ) = 0 LMAX( 4 ) = 0 NINFO = 0 KNT = 0 RMAX = ZERO * EPS = DLAMCH( 'Precision' ) * 10 CONTINUE READ( NIN, FMT = * )N, M IF( N.EQ.0 ) $ GO TO 100 * DO 20 I = 1, N READ( NIN, FMT = * )( A( I, J ), J = 1, N ) 20 CONTINUE * DO 30 I = 1, N READ( NIN, FMT = * )( B( I, J ), J = 1, N ) 30 CONTINUE * DO 40 I = 1, N READ( NIN, FMT = * )( VL( I, J ), J = 1, M ) 40 CONTINUE * DO 50 I = 1, N READ( NIN, FMT = * )( VR( I, J ), J = 1, M ) 50 CONTINUE * KNT = KNT + 1 * ANORM = ZLANGE( 'M', N, N, A, LDA, RWORK ) BNORM = ZLANGE( 'M', N, N, B, LDB, RWORK ) * CALL ZLACPY( 'FULL', N, N, A, LDA, AF, LDA ) CALL ZLACPY( 'FULL', N, N, B, LDB, BF, LDB ) * CALL ZGGBAL( 'B', N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, $ RWORK, INFO ) IF( INFO.NE.0 ) THEN NINFO = NINFO + 1 LMAX( 1 ) = KNT END IF * CALL ZLACPY( 'FULL', N, M, VL, LDVL, VLF, LDVL ) CALL ZLACPY( 'FULL', N, M, VR, LDVR, VRF, LDVR ) * CALL ZGGBAK( 'B', 'L', N, ILO, IHI, LSCALE, RSCALE, M, VL, LDVL, $ INFO ) IF( INFO.NE.0 ) THEN NINFO = NINFO + 1 LMAX( 2 ) = KNT END IF * CALL ZGGBAK( 'B', 'R', N, ILO, IHI, LSCALE, RSCALE, M, VR, LDVR, $ INFO ) IF( INFO.NE.0 ) THEN NINFO = NINFO + 1 LMAX( 3 ) = KNT END IF * * Test of ZGGBAK * * Check tilde(VL)'*A*tilde(VR) - VL'*tilde(A)*VR * where tilde(A) denotes the transformed matrix. * CALL ZGEMM( 'N', 'N', N, M, N, CONE, AF, LDA, VR, LDVR, CZERO, $ WORK, LDWORK ) CALL ZGEMM( 'C', 'N', M, M, N, CONE, VL, LDVL, WORK, LDWORK, $ CZERO, E, LDE ) * CALL ZGEMM( 'N', 'N', N, M, N, CONE, A, LDA, VRF, LDVR, CZERO, $ WORK, LDWORK ) CALL ZGEMM( 'C', 'N', M, M, N, CONE, VLF, LDVL, WORK, LDWORK, $ CZERO, F, LDF ) * VMAX = ZERO DO 70 J = 1, M DO 60 I = 1, M VMAX = MAX( VMAX, CABS1( E( I, J )-F( I, J ) ) ) 60 CONTINUE 70 CONTINUE VMAX = VMAX / ( EPS*MAX( ANORM, BNORM ) ) IF( VMAX.GT.RMAX ) THEN LMAX( 4 ) = KNT RMAX = VMAX END IF * * Check tilde(VL)'*B*tilde(VR) - VL'*tilde(B)*VR * CALL ZGEMM( 'N', 'N', N, M, N, CONE, BF, LDB, VR, LDVR, CZERO, $ WORK, LDWORK ) CALL ZGEMM( 'C', 'N', M, M, N, CONE, VL, LDVL, WORK, LDWORK, $ CZERO, E, LDE ) * CALL ZGEMM( 'n', 'n', N, M, N, CONE, B, LDB, VRF, LDVR, CZERO, $ WORK, LDWORK ) CALL ZGEMM( 'C', 'N', M, M, N, CONE, VLF, LDVL, WORK, LDWORK, $ CZERO, F, LDF ) * VMAX = ZERO DO 90 J = 1, M DO 80 I = 1, M VMAX = MAX( VMAX, CABS1( E( I, J )-F( I, J ) ) ) 80 CONTINUE 90 CONTINUE VMAX = VMAX / ( EPS*MAX( ANORM, BNORM ) ) IF( VMAX.GT.RMAX ) THEN LMAX( 4 ) = KNT RMAX = VMAX END IF * GO TO 10 * 100 CONTINUE * WRITE( NOUT, FMT = 9999 ) 9999 FORMAT( 1X, '.. test output of ZGGBAK .. ' ) * WRITE( NOUT, FMT = 9998 )RMAX 9998 FORMAT( ' value of largest test error =', D12.3 ) WRITE( NOUT, FMT = 9997 )LMAX( 1 ) 9997 FORMAT( ' example number where ZGGBAL info is not 0 =', I4 ) WRITE( NOUT, FMT = 9996 )LMAX( 2 ) 9996 FORMAT( ' example number where ZGGBAK(L) info is not 0 =', I4 ) WRITE( NOUT, FMT = 9995 )LMAX( 3 ) 9995 FORMAT( ' example number where ZGGBAK(R) info is not 0 =', I4 ) WRITE( NOUT, FMT = 9994 )LMAX( 4 ) 9994 FORMAT( ' example number having largest error =', I4 ) WRITE( NOUT, FMT = 9992 )NINFO 9992 FORMAT( ' number of examples where info is not 0 =', I4 ) WRITE( NOUT, FMT = 9991 )KNT 9991 FORMAT( ' total number of examples tested =', I4 ) * RETURN * * End of ZCHKGK * END