numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/EIG/zchkst2stg.f 72932B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
*> \brief \b ZCHKST2STG
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
*                          NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
*                          WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
*                          LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
*                          INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
*      $                   NSIZES, NTYPES
*       DOUBLE PRECISION   THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            DOTYPE( * )
*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
*       DOUBLE PRECISION   D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
*      $                   RESULT( * ), RWORK( * ), SD( * ), SE( * ),
*      $                   WA1( * ), WA2( * ), WA3( * ), WR( * )
*       COMPLEX*16         A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
*      $                   V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZCHKST2STG  checks the Hermitian eigenvalue problem routines
*> using the 2-stage reduction techniques. Since the generation
*> of Q or the vectors is not available in this release, we only 
*> compare the eigenvalue resulting when using the 2-stage to the 
*> one considered as reference using the standard 1-stage reduction
*> ZHETRD. For that, we call the standard ZHETRD and compute D1 using 
*> DSTEQR, then we call the 2-stage ZHETRD_2STAGE with Upper and Lower
*> and we compute D2 and D3 using DSTEQR and then we replaced tests
*> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that 
*> the 1-stage results are OK and can be trusted.
*> This testing routine will converge to the ZCHKST in the next 
*> release when vectors and generation of Q will be implemented.
*>
*>    ZHETRD factors A as  U S U* , where * means conjugate transpose,
*>    S is real symmetric tridiagonal, and U is unitary.
*>    ZHETRD can use either just the lower or just the upper triangle
*>    of A; ZCHKST2STG checks both cases.
*>    U is represented as a product of Householder
*>    transformations, whose vectors are stored in the first
*>    n-1 columns of V, and whose scale factors are in TAU.
*>
*>    ZHPTRD does the same as ZHETRD, except that A and V are stored
*>    in "packed" format.
*>
*>    ZUNGTR constructs the matrix U from the contents of V and TAU.
*>
*>    ZUPGTR constructs the matrix U from the contents of VP and TAU.
*>
*>    ZSTEQR factors S as  Z D1 Z* , where Z is the unitary
*>    matrix of eigenvectors and D1 is a diagonal matrix with
*>    the eigenvalues on the diagonal.  D2 is the matrix of
*>    eigenvalues computed when Z is not computed.
*>
*>    DSTERF computes D3, the matrix of eigenvalues, by the
*>    PWK method, which does not yield eigenvectors.
*>
*>    ZPTEQR factors S as  Z4 D4 Z4* , for a
*>    Hermitian positive definite tridiagonal matrix.
*>    D5 is the matrix of eigenvalues computed when Z is not
*>    computed.
*>
*>    DSTEBZ computes selected eigenvalues.  WA1, WA2, and
*>    WA3 will denote eigenvalues computed to high
*>    absolute accuracy, with different range options.
*>    WR will denote eigenvalues computed to high relative
*>    accuracy.
*>
*>    ZSTEIN computes Y, the eigenvectors of S, given the
*>    eigenvalues.
*>
*>    ZSTEDC factors S as Z D1 Z* , where Z is the unitary
*>    matrix of eigenvectors and D1 is a diagonal matrix with
*>    the eigenvalues on the diagonal ('I' option). It may also
*>    update an input unitary matrix, usually the output
*>    from ZHETRD/ZUNGTR or ZHPTRD/ZUPGTR ('V' option). It may
*>    also just compute eigenvalues ('N' option).
*>
*>    ZSTEMR factors S as Z D1 Z* , where Z is the unitary
*>    matrix of eigenvectors and D1 is a diagonal matrix with
*>    the eigenvalues on the diagonal ('I' option).  ZSTEMR
*>    uses the Relatively Robust Representation whenever possible.
*>
*> When ZCHKST2STG is called, a number of matrix "sizes" ("n's") and a
*> number of matrix "types" are specified.  For each size ("n")
*> and each type of matrix, one matrix will be generated and used
*> to test the Hermitian eigenroutines.  For each matrix, a number
*> of tests will be performed:
*>
*> (1)     | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='U', ... )
*>
*> (2)     | I - UV* | / ( n ulp )        ZUNGTR( UPLO='U', ... )
*>
*> (3)     | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='L', ... )
*>         replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the 
*>         eigenvalue matrix computed using S and D2 is the 
*>         eigenvalue matrix computed using S_2stage the output of
*>         ZHETRD_2STAGE("N", "U",....). D1 and D2 are computed 
*>         via DSTEQR('N',...) 
*>
*> (4)     | I - UV* | / ( n ulp )        ZUNGTR( UPLO='L', ... )
*>         replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the 
*>         eigenvalue matrix computed using S and D3 is the 
*>         eigenvalue matrix computed using S_2stage the output of
*>         ZHETRD_2STAGE("N", "L",....). D1 and D3 are computed 
*>         via DSTEQR('N',...)  
*>
*> (5-8)   Same as 1-4, but for ZHPTRD and ZUPGTR.
*>
*> (9)     | S - Z D Z* | / ( |S| n ulp ) ZSTEQR('V',...)
*>
*> (10)    | I - ZZ* | / ( n ulp )        ZSTEQR('V',...)
*>
*> (11)    | D1 - D2 | / ( |D1| ulp )        ZSTEQR('N',...)
*>
*> (12)    | D1 - D3 | / ( |D1| ulp )        DSTERF
*>
*> (13)    0 if the true eigenvalues (computed by sturm count)
*>         of S are within THRESH of
*>         those in D1.  2*THRESH if they are not.  (Tested using
*>         DSTECH)
*>
*> For S positive definite,
*>
*> (14)    | S - Z4 D4 Z4* | / ( |S| n ulp ) ZPTEQR('V',...)
*>
*> (15)    | I - Z4 Z4* | / ( n ulp )        ZPTEQR('V',...)
*>
*> (16)    | D4 - D5 | / ( 100 |D4| ulp )       ZPTEQR('N',...)
*>
*> When S is also diagonally dominant by the factor gamma < 1,
*>
*> (17)    max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
*>          i
*>         omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
*>                                              DSTEBZ( 'A', 'E', ...)
*>
*> (18)    | WA1 - D3 | / ( |D3| ulp )          DSTEBZ( 'A', 'E', ...)
*>
*> (19)    ( max { min | WA2(i)-WA3(j) | } +
*>            i     j
*>           max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
*>            i     j
*>                                              DSTEBZ( 'I', 'E', ...)
*>
*> (20)    | S - Y WA1 Y* | / ( |S| n ulp )  DSTEBZ, ZSTEIN
*>
*> (21)    | I - Y Y* | / ( n ulp )          DSTEBZ, ZSTEIN
*>
*> (22)    | S - Z D Z* | / ( |S| n ulp )    ZSTEDC('I')
*>
*> (23)    | I - ZZ* | / ( n ulp )           ZSTEDC('I')
*>
*> (24)    | S - Z D Z* | / ( |S| n ulp )    ZSTEDC('V')
*>
*> (25)    | I - ZZ* | / ( n ulp )           ZSTEDC('V')
*>
*> (26)    | D1 - D2 | / ( |D1| ulp )           ZSTEDC('V') and
*>                                              ZSTEDC('N')
*>
*> Test 27 is disabled at the moment because ZSTEMR does not
*> guarantee high relatvie accuracy.
*>
*> (27)    max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
*>          i
*>         omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
*>                                              ZSTEMR('V', 'A')
*>
*> (28)    max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
*>          i
*>         omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
*>                                              ZSTEMR('V', 'I')
*>
*> Tests 29 through 34 are disable at present because ZSTEMR
*> does not handle partial spectrum requests.
*>
*> (29)    | S - Z D Z* | / ( |S| n ulp )    ZSTEMR('V', 'I')
*>
*> (30)    | I - ZZ* | / ( n ulp )           ZSTEMR('V', 'I')
*>
*> (31)    ( max { min | WA2(i)-WA3(j) | } +
*>            i     j
*>           max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
*>            i     j
*>         ZSTEMR('N', 'I') vs. CSTEMR('V', 'I')
*>
*> (32)    | S - Z D Z* | / ( |S| n ulp )    ZSTEMR('V', 'V')
*>
*> (33)    | I - ZZ* | / ( n ulp )           ZSTEMR('V', 'V')
*>
*> (34)    ( max { min | WA2(i)-WA3(j) | } +
*>            i     j
*>           max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
*>            i     j
*>         ZSTEMR('N', 'V') vs. CSTEMR('V', 'V')
*>
*> (35)    | S - Z D Z* | / ( |S| n ulp )    ZSTEMR('V', 'A')
*>
*> (36)    | I - ZZ* | / ( n ulp )           ZSTEMR('V', 'A')
*>
*> (37)    ( max { min | WA2(i)-WA3(j) | } +
*>            i     j
*>           max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
*>            i     j
*>         ZSTEMR('N', 'A') vs. CSTEMR('V', 'A')
*>
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
*> each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1)  The zero matrix.
*> (2)  The identity matrix.
*>
*> (3)  A diagonal matrix with evenly spaced entries
*>      1, ..., ULP  and random signs.
*>      (ULP = (first number larger than 1) - 1 )
*> (4)  A diagonal matrix with geometrically spaced entries
*>      1, ..., ULP  and random signs.
*> (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*>      and random signs.
*>
*> (6)  Same as (4), but multiplied by SQRT( overflow threshold )
*> (7)  Same as (4), but multiplied by SQRT( underflow threshold )
*>
*> (8)  A matrix of the form  U* D U, where U is unitary and
*>      D has evenly spaced entries 1, ..., ULP with random signs
*>      on the diagonal.
*>
*> (9)  A matrix of the form  U* D U, where U is unitary and
*>      D has geometrically spaced entries 1, ..., ULP with random
*>      signs on the diagonal.
*>
*> (10) A matrix of the form  U* D U, where U is unitary and
*>      D has "clustered" entries 1, ULP,..., ULP with random
*>      signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Hermitian matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*> (16) Same as (8), but diagonal elements are all positive.
*> (17) Same as (9), but diagonal elements are all positive.
*> (18) Same as (10), but diagonal elements are all positive.
*> (19) Same as (16), but multiplied by SQRT( overflow threshold )
*> (20) Same as (16), but multiplied by SQRT( underflow threshold )
*> (21) A diagonally dominant tridiagonal matrix with geometrically
*>      spaced diagonal entries 1, ..., ULP.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NSIZES
*> \verbatim
*>          NSIZES is INTEGER
*>          The number of sizes of matrices to use.  If it is zero,
*>          ZCHKST2STG does nothing.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER array, dimension (NSIZES)
*>          An array containing the sizes to be used for the matrices.
*>          Zero values will be skipped.  The values must be at least
*>          zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*>          NTYPES is INTEGER
*>          The number of elements in DOTYPE.   If it is zero, ZCHKST2STG
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
*>          defined, which is to use whatever matrix is in A.  This
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*>          DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
*>          matrix of that size and of type j will be generated.
*>          If NTYPES is smaller than the maximum number of types
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
*>          MAXTYP will not be generated.  If NTYPES is larger
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*>          will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry ISEED specifies the seed of the random number
*>          generator. The array elements should be between 0 and 4095;
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
*>          be odd.  The random number generator uses a linear
*>          congruential sequence limited to small integers, and so
*>          should produce machine independent random numbers. The
*>          values of ISEED are changed on exit, and can be used in the
*>          next call to ZCHKST2STG to continue the same random number
*>          sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is DOUBLE PRECISION
*>          A test will count as "failed" if the "error", computed as
*>          described above, exceeds THRESH.  Note that the error
*>          is scaled to be O(1), so THRESH should be a reasonably
*>          small multiple of 1, e.g., 10 or 100.  In particular,
*>          it should not depend on the precision (single vs. double)
*>          or the size of the matrix.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*>          NOUNIT is INTEGER
*>          The FORTRAN unit number for printing out error messages
*>          (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array of
*>                                  dimension ( LDA , max(NN) )
*>          Used to hold the matrix whose eigenvalues are to be
*>          computed.  On exit, A contains the last matrix actually
*>          used.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  It must be at
*>          least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[out] AP
*> \verbatim
*>          AP is COMPLEX*16 array of
*>                      dimension( max(NN)*max(NN+1)/2 )
*>          The matrix A stored in packed format.
*> \endverbatim
*>
*> \param[out] SD
*> \verbatim
*>          SD is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          The diagonal of the tridiagonal matrix computed by ZHETRD.
*>          On exit, SD and SE contain the tridiagonal form of the
*>          matrix in A.
*> \endverbatim
*>
*> \param[out] SE
*> \verbatim
*>          SE is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          The off-diagonal of the tridiagonal matrix computed by
*>          ZHETRD.  On exit, SD and SE contain the tridiagonal form of
*>          the matrix in A.
*> \endverbatim
*>
*> \param[out] D1
*> \verbatim
*>          D1 is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by ZSTEQR simultaneously
*>          with Z.  On exit, the eigenvalues in D1 correspond with the
*>          matrix in A.
*> \endverbatim
*>
*> \param[out] D2
*> \verbatim
*>          D2 is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by ZSTEQR if Z is not
*>          computed.  On exit, the eigenvalues in D2 correspond with
*>          the matrix in A.
*> \endverbatim
*>
*> \param[out] D3
*> \verbatim
*>          D3 is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by DSTERF.  On exit, the
*>          eigenvalues in D3 correspond with the matrix in A.
*> \endverbatim
*>
*> \param[out] D4
*> \verbatim
*>          D4 is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by ZPTEQR(V).
*>          ZPTEQR factors S as  Z4 D4 Z4*
*>          On exit, the eigenvalues in D4 correspond with the matrix in A.
*> \endverbatim
*>
*> \param[out] D5
*> \verbatim
*>          D5 is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by ZPTEQR(N)
*>          when Z is not computed. On exit, the
*>          eigenvalues in D4 correspond with the matrix in A.
*> \endverbatim
*>
*> \param[out] WA1
*> \verbatim
*>          WA1 is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          All eigenvalues of A, computed to high
*>          absolute accuracy, with different range options.
*>          as computed by DSTEBZ.
*> \endverbatim
*>
*> \param[out] WA2
*> \verbatim
*>          WA2 is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          Selected eigenvalues of A, computed to high
*>          absolute accuracy, with different range options.
*>          as computed by DSTEBZ.
*>          Choose random values for IL and IU, and ask for the
*>          IL-th through IU-th eigenvalues.
*> \endverbatim
*>
*> \param[out] WA3
*> \verbatim
*>          WA3 is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          Selected eigenvalues of A, computed to high
*>          absolute accuracy, with different range options.
*>          as computed by DSTEBZ.
*>          Determine the values VL and VU of the IL-th and IU-th
*>          eigenvalues and ask for all eigenvalues in this range.
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*>          WR is DOUBLE PRECISION array of
*>                             dimension( max(NN) )
*>          All eigenvalues of A, computed to high
*>          absolute accuracy, with different options.
*>          as computed by DSTEBZ.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is COMPLEX*16 array of
*>                             dimension( LDU, max(NN) ).
*>          The unitary matrix computed by ZHETRD + ZUNGTR.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of U, Z, and V.  It must be at least 1
*>          and at least max( NN ).
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*>          V is COMPLEX*16 array of
*>                             dimension( LDU, max(NN) ).
*>          The Housholder vectors computed by ZHETRD in reducing A to
*>          tridiagonal form.  The vectors computed with UPLO='U' are
*>          in the upper triangle, and the vectors computed with UPLO='L'
*>          are in the lower triangle.  (As described in ZHETRD, the
*>          sub- and superdiagonal are not set to 1, although the
*>          true Householder vector has a 1 in that position.  The
*>          routines that use V, such as ZUNGTR, set those entries to
*>          1 before using them, and then restore them later.)
*> \endverbatim
*>
*> \param[out] VP
*> \verbatim
*>          VP is COMPLEX*16 array of
*>                      dimension( max(NN)*max(NN+1)/2 )
*>          The matrix V stored in packed format.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array of
*>                             dimension( max(NN) )
*>          The Householder factors computed by ZHETRD in reducing A
*>          to tridiagonal form.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is COMPLEX*16 array of
*>                             dimension( LDU, max(NN) ).
*>          The unitary matrix of eigenvectors computed by ZSTEQR,
*>          ZPTEQR, and ZSTEIN.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array of
*>                      dimension( LWORK )
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The number of entries in WORK.  This must be at least
*>          1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
*>          where Nmax = max( NN(j), 2 ) and lg = log base 2.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array,
*>          Workspace.
*> \endverbatim
*>
*> \param[out] LIWORK
*> \verbatim
*>          LIWORK is INTEGER
*>          The number of entries in IWORK.  This must be at least
*>                  6 + 6*Nmax + 5 * Nmax * lg Nmax
*>          where Nmax = max( NN(j), 2 ) and lg = log base 2.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*>          LRWORK is INTEGER
*>          The number of entries in LRWORK (dimension( ??? )
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (26)
*>          The values computed by the tests described above.
*>          The values are currently limited to 1/ulp, to avoid
*>          overflow.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          If 0, then everything ran OK.
*>           -1: NSIZES < 0
*>           -2: Some NN(j) < 0
*>           -3: NTYPES < 0
*>           -5: THRESH < 0
*>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
*>          -23: LDU < 1 or LDU < NMAX.
*>          -29: LWORK too small.
*>          If  ZLATMR, CLATMS, ZHETRD, ZUNGTR, ZSTEQR, DSTERF,
*>              or ZUNMC2 returns an error code, the
*>              absolute value of it is returned.
*>
*>-----------------------------------------------------------------------
*>
*>       Some Local Variables and Parameters:
*>       ---- ----- --------- --- ----------
*>       ZERO, ONE       Real 0 and 1.
*>       MAXTYP          The number of types defined.
*>       NTEST           The number of tests performed, or which can
*>                       be performed so far, for the current matrix.
*>       NTESTT          The total number of tests performed so far.
*>       NBLOCK          Blocksize as returned by ENVIR.
*>       NMAX            Largest value in NN.
*>       NMATS           The number of matrices generated so far.
*>       NERRS           The number of tests which have exceeded THRESH
*>                       so far.
*>       COND, IMODE     Values to be passed to the matrix generators.
*>       ANORM           Norm of A; passed to matrix generators.
*>
*>       OVFL, UNFL      Overflow and underflow thresholds.
*>       ULP, ULPINV     Finest relative precision and its inverse.
*>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
*>               The following four arrays decode JTYPE:
*>       KTYPE(j)        The general type (1-10) for type "j".
*>       KMODE(j)        The MODE value to be passed to the matrix
*>                       generator for type "j".
*>       KMAGN(j)        The order of magnitude ( O(1),
*>                       O(overflow^(1/2) ), O(underflow^(1/2) )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_eig
*
*  =====================================================================
      SUBROUTINE ZCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
     $                   NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
     $                   WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
     $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
     $                   INFO )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
     $                   NSIZES, NTYPES
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
      DOUBLE PRECISION   D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
     $                   RESULT( * ), RWORK( * ), SD( * ), SE( * ),
     $                   WA1( * ), WA2( * ), WA3( * ), WR( * )
      COMPLEX*16         A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
     $                   V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT, TEN, HUN
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                   EIGHT = 8.0D0, TEN = 10.0D0, HUN = 100.0D0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
      DOUBLE PRECISION   HALF
      PARAMETER          ( HALF = ONE / TWO )
      INTEGER            MAXTYP
      PARAMETER          ( MAXTYP = 21 )
      LOGICAL            CRANGE
      PARAMETER          ( CRANGE = .FALSE. )
      LOGICAL            CREL
      PARAMETER          ( CREL = .FALSE. )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADNN, TRYRAC
      INTEGER            I, IINFO, IL, IMODE, INDE, INDRWK, ITEMP,
     $                   ITYPE, IU, J, JC, JR, JSIZE, JTYPE, LGN,
     $                   LIWEDC, LOG2UI, LRWEDC, LWEDC, M, M2, M3,
     $                   MTYPES, N, NAP, NBLOCK, NERRS, NMATS, NMAX,
     $                   NSPLIT, NTEST, NTESTT, LH, LW
      DOUBLE PRECISION   ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
     $                   RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
     $                   ULPINV, UNFL, VL, VU
*     ..
*     .. Local Arrays ..
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
     $                   KTYPE( MAXTYP )
      DOUBLE PRECISION   DUMMA( 1 )
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, DLARND, DSXT1
      EXTERNAL           ILAENV, DLAMCH, DLARND, DSXT1
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLASUM, DSTEBZ, DSTECH, DSTERF, XERBLA,
     $                   ZCOPY, ZHET21, ZHETRD, ZHPT21, ZHPTRD, ZLACPY,
     $                   ZLASET, ZLATMR, ZLATMS, ZPTEQR, ZSTEDC, ZSTEMR,
     $                   ZSTEIN, ZSTEQR, ZSTT21, ZSTT22, ZUNGTR, ZUPGTR,
     $                   ZHETRD_2STAGE, DLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCONJG, INT, LOG, MAX, MIN, SQRT
*     ..
*     .. Data statements ..
      DATA               KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
     $                   8, 8, 9, 9, 9, 9, 9, 10 /
      DATA               KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
     $                   2, 3, 1, 1, 1, 2, 3, 1 /
      DATA               KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
     $                   0, 0, 4, 3, 1, 4, 4, 3 /
*     ..
*     .. Executable Statements ..
*
*     Keep ftnchek happy
      IDUMMA( 1 ) = 1
*
*     Check for errors
*
      NTESTT = 0
      INFO = 0
*
*     Important constants
*
      BADNN = .FALSE.
      TRYRAC = .TRUE.
      NMAX = 1
      DO 10 J = 1, NSIZES
         NMAX = MAX( NMAX, NN( J ) )
         IF( NN( J ).LT.0 )
     $      BADNN = .TRUE.
   10 CONTINUE
*
      NBLOCK = ILAENV( 1, 'ZHETRD', 'L', NMAX, -1, -1, -1 )
      NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
*
*     Check for errors
*
      IF( NSIZES.LT.0 ) THEN
         INFO = -1
      ELSE IF( BADNN ) THEN
         INFO = -2
      ELSE IF( NTYPES.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.NMAX ) THEN
         INFO = -9
      ELSE IF( LDU.LT.NMAX ) THEN
         INFO = -23
      ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
         INFO = -29
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZCHKST2STG', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
     $   RETURN
*
*     More Important constants
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
      ULPINV = ONE / ULP
      LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
      RTUNFL = SQRT( UNFL )
      RTOVFL = SQRT( OVFL )
*
*     Loop over sizes, types
*
      DO 20 I = 1, 4
         ISEED2( I ) = ISEED( I )
   20 CONTINUE
      NERRS = 0
      NMATS = 0
*
      DO 310 JSIZE = 1, NSIZES
         N = NN( JSIZE )
         IF( N.GT.0 ) THEN
            LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
            IF( 2**LGN.LT.N )
     $         LGN = LGN + 1
            IF( 2**LGN.LT.N )
     $         LGN = LGN + 1
            LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
            LRWEDC = 1 + 3*N + 2*N*LGN + 4*N**2
            LIWEDC = 6 + 6*N + 5*N*LGN
         ELSE
            LWEDC = 8
            LRWEDC = 7
            LIWEDC = 12
         END IF
         NAP = ( N*( N+1 ) ) / 2
         ANINV = ONE / DBLE( MAX( 1, N ) )
*
         IF( NSIZES.NE.1 ) THEN
            MTYPES = MIN( MAXTYP, NTYPES )
         ELSE
            MTYPES = MIN( MAXTYP+1, NTYPES )
         END IF
*
         DO 300 JTYPE = 1, MTYPES
            IF( .NOT.DOTYPE( JTYPE ) )
     $         GO TO 300
            NMATS = NMATS + 1
            NTEST = 0
*
            DO 30 J = 1, 4
               IOLDSD( J ) = ISEED( J )
   30       CONTINUE
*
*           Compute "A"
*
*           Control parameters:
*
*               KMAGN  KMODE        KTYPE
*           =1  O(1)   clustered 1  zero
*           =2  large  clustered 2  identity
*           =3  small  exponential  (none)
*           =4         arithmetic   diagonal, (w/ eigenvalues)
*           =5         random log   Hermitian, w/ eigenvalues
*           =6         random       (none)
*           =7                      random diagonal
*           =8                      random Hermitian
*           =9                      positive definite
*           =10                     diagonally dominant tridiagonal
*
            IF( MTYPES.GT.MAXTYP )
     $         GO TO 100
*
            ITYPE = KTYPE( JTYPE )
            IMODE = KMODE( JTYPE )
*
*           Compute norm
*
            GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
   40       CONTINUE
            ANORM = ONE
            GO TO 70
*
   50       CONTINUE
            ANORM = ( RTOVFL*ULP )*ANINV
            GO TO 70
*
   60       CONTINUE
            ANORM = RTUNFL*N*ULPINV
            GO TO 70
*
   70       CONTINUE
*
            CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
            IINFO = 0
            IF( JTYPE.LE.15 ) THEN
               COND = ULPINV
            ELSE
               COND = ULPINV*ANINV / TEN
            END IF
*
*           Special Matrices -- Identity & Jordan block
*
*              Zero
*
            IF( ITYPE.EQ.1 ) THEN
               IINFO = 0
*
            ELSE IF( ITYPE.EQ.2 ) THEN
*
*              Identity
*
               DO 80 JC = 1, N
                  A( JC, JC ) = ANORM
   80          CONTINUE
*
            ELSE IF( ITYPE.EQ.4 ) THEN
*
*              Diagonal Matrix, [Eigen]values Specified
*
               CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
     $                      ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
*
*
            ELSE IF( ITYPE.EQ.5 ) THEN
*
*              Hermitian, eigenvalues specified
*
               CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
     $                      ANORM, N, N, 'N', A, LDA, WORK, IINFO )
*
            ELSE IF( ITYPE.EQ.7 ) THEN
*
*              Diagonal, random eigenvalues
*
               CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.8 ) THEN
*
*              Hermitian, random eigenvalues
*
               CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.9 ) THEN
*
*              Positive definite, eigenvalues specified.
*
               CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
     $                      ANORM, N, N, 'N', A, LDA, WORK, IINFO )
*
            ELSE IF( ITYPE.EQ.10 ) THEN
*
*              Positive definite tridiagonal, eigenvalues specified.
*
               CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
     $                      ANORM, 1, 1, 'N', A, LDA, WORK, IINFO )
               DO 90 I = 2, N
                  TEMP1 = ABS( A( I-1, I ) )
                  TEMP2 = SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
                  IF( TEMP1.GT.HALF*TEMP2 ) THEN
                     A( I-1, I ) = A( I-1, I )*
     $                             ( HALF*TEMP2 / ( UNFL+TEMP1 ) )
                     A( I, I-1 ) = DCONJG( A( I-1, I ) )
                  END IF
   90          CONTINUE
*
            ELSE
*
               IINFO = 1
            END IF
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               RETURN
            END IF
*
  100       CONTINUE
*
*           Call ZHETRD and ZUNGTR to compute S and U from
*           upper triangle.
*
            CALL ZLACPY( 'U', N, N, A, LDA, V, LDU )
*
            NTEST = 1
            CALL ZHETRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
     $                   IINFO )
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZHETRD(U)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 1 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            CALL ZLACPY( 'U', N, N, V, LDU, U, LDU )
*
            NTEST = 2
            CALL ZUNGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZUNGTR(U)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 2 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do tests 1 and 2
*
            CALL ZHET21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
     $                   LDU, TAU, WORK, RWORK, RESULT( 1 ) )
            CALL ZHET21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
     $                   LDU, TAU, WORK, RWORK, RESULT( 2 ) )
*
*           Compute D1 the eigenvalues resulting from the tridiagonal
*           form using the standard 1-stage algorithm and use it as a
*           reference to compare with the 2-stage technique
*
*           Compute D1 from the 1-stage and used as reference for the
*           2-stage
*
            CALL DCOPY( N, SD, 1, D1, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
            CALL ZSTEQR( 'N', N, D1, RWORK, WORK, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 3 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           2-STAGE TRD Upper case is used to compute D2.
*           Note to set SD and SE to zero to be sure not reusing 
*           the one from above. Compare it with D1 computed 
*           using the 1-stage.
*
            CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, N )
            CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, N )
            CALL ZLACPY( 'U', N, N, A, LDA, V, LDU )
            LH = MAX(1, 4*N)
            LW = LWORK - LH
            CALL ZHETRD_2STAGE( 'N', "U", N, V, LDU, SD, SE, TAU, 
     $                   WORK, LH, WORK( LH+1 ), LW, IINFO )
*
*           Compute D2 from the 2-stage Upper case
*
            CALL DCOPY( N, SD, 1, D2, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
            NTEST = 3
            CALL ZSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 3 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           2-STAGE TRD Lower case is used to compute D3.
*           Note to set SD and SE to zero to be sure not reusing 
*           the one from above. Compare it with D1 computed 
*           using the 1-stage. 
*
            CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, N )
            CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, N )
            CALL ZLACPY( 'L', N, N, A, LDA, V, LDU )
            CALL ZHETRD_2STAGE( 'N', "L", N, V, LDU, SD, SE, TAU, 
     $                   WORK, LH, WORK( LH+1 ), LW, IINFO )
*
*           Compute D3 from the 2-stage Upper case
*
            CALL DCOPY( N, SD, 1, D3, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
            NTEST = 4
            CALL ZSTEQR( 'N', N, D3, RWORK, WORK, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 4 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Tests 3 and 4 which are similar to 11 and 12 but with the
*           D1 computed using the standard 1-stage reduction as reference
*
            NTEST = 4
            TEMP1 = ZERO
            TEMP2 = ZERO
            TEMP3 = ZERO
            TEMP4 = ZERO
*
            DO 151 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
               TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
               TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
               TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  151       CONTINUE
*
            RESULT( 3 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
            RESULT( 4 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
*
*           Store the upper triangle of A in AP
*
            I = 0
            DO 120 JC = 1, N
               DO 110 JR = 1, JC
                  I = I + 1
                  AP( I ) = A( JR, JC )
  110          CONTINUE
  120       CONTINUE
*
*           Call ZHPTRD and ZUPGTR to compute S and U from AP
*
            CALL ZCOPY( NAP, AP, 1, VP, 1 )
*
            NTEST = 5
            CALL ZHPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZHPTRD(U)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 5 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            NTEST = 6
            CALL ZUPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZUPGTR(U)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 6 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do tests 5 and 6
*
            CALL ZHPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
     $                   WORK, RWORK, RESULT( 5 ) )
            CALL ZHPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
     $                   WORK, RWORK, RESULT( 6 ) )
*
*           Store the lower triangle of A in AP
*
            I = 0
            DO 140 JC = 1, N
               DO 130 JR = JC, N
                  I = I + 1
                  AP( I ) = A( JR, JC )
  130          CONTINUE
  140       CONTINUE
*
*           Call ZHPTRD and ZUPGTR to compute S and U from AP
*
            CALL ZCOPY( NAP, AP, 1, VP, 1 )
*
            NTEST = 7
            CALL ZHPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZHPTRD(L)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 7 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            NTEST = 8
            CALL ZUPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZUPGTR(L)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 8 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            CALL ZHPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
     $                   WORK, RWORK, RESULT( 7 ) )
            CALL ZHPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
     $                   WORK, RWORK, RESULT( 8 ) )
*
*           Call ZSTEQR to compute D1, D2, and Z, do tests.
*
*           Compute D1 and Z
*
            CALL DCOPY( N, SD, 1, D1, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK, 1 )
            CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
            NTEST = 9
            CALL ZSTEQR( 'V', N, D1, RWORK, Z, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(V)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 9 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Compute D2
*
            CALL DCOPY( N, SD, 1, D2, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
            NTEST = 11
            CALL ZSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 11 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Compute D3 (using PWK method)
*
            CALL DCOPY( N, SD, 1, D3, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
            NTEST = 12
            CALL DSTERF( N, D3, RWORK, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'DSTERF', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 12 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Tests 9 and 10
*
            CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
     $                   RESULT( 9 ) )
*
*           Do Tests 11 and 12
*
            TEMP1 = ZERO
            TEMP2 = ZERO
            TEMP3 = ZERO
            TEMP4 = ZERO
*
            DO 150 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
               TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
               TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
               TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  150       CONTINUE
*
            RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
            RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
*
*           Do Test 13 -- Sturm Sequence Test of Eigenvalues
*                         Go up by factors of two until it succeeds
*
            NTEST = 13
            TEMP1 = THRESH*( HALF-ULP )
*
            DO 160 J = 0, LOG2UI
               CALL DSTECH( N, SD, SE, D1, TEMP1, RWORK, IINFO )
               IF( IINFO.EQ.0 )
     $            GO TO 170
               TEMP1 = TEMP1*TWO
  160       CONTINUE
*
  170       CONTINUE
            RESULT( 13 ) = TEMP1
*
*           For positive definite matrices ( JTYPE.GT.15 ) call ZPTEQR
*           and do tests 14, 15, and 16 .
*
            IF( JTYPE.GT.15 ) THEN
*
*              Compute D4 and Z4
*
               CALL DCOPY( N, SD, 1, D4, 1 )
               IF( N.GT.0 )
     $            CALL DCOPY( N-1, SE, 1, RWORK, 1 )
               CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
               NTEST = 14
               CALL ZPTEQR( 'V', N, D4, RWORK, Z, LDU, RWORK( N+1 ),
     $                      IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'ZPTEQR(V)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 14 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*              Do Tests 14 and 15
*
               CALL ZSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
     $                      RWORK, RESULT( 14 ) )
*
*              Compute D5
*
               CALL DCOPY( N, SD, 1, D5, 1 )
               IF( N.GT.0 )
     $            CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
               NTEST = 16
               CALL ZPTEQR( 'N', N, D5, RWORK, Z, LDU, RWORK( N+1 ),
     $                      IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'ZPTEQR(N)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 16 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*              Do Test 16
*
               TEMP1 = ZERO
               TEMP2 = ZERO
               DO 180 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
                  TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
  180          CONTINUE
*
               RESULT( 16 ) = TEMP2 / MAX( UNFL,
     $                        HUN*ULP*MAX( TEMP1, TEMP2 ) )
            ELSE
               RESULT( 14 ) = ZERO
               RESULT( 15 ) = ZERO
               RESULT( 16 ) = ZERO
            END IF
*
*           Call DSTEBZ with different options and do tests 17-18.
*
*              If S is positive definite and diagonally dominant,
*              ask for all eigenvalues with high relative accuracy.
*
            VL = ZERO
            VU = ZERO
            IL = 0
            IU = 0
            IF( JTYPE.EQ.21 ) THEN
               NTEST = 17
               ABSTOL = UNFL + UNFL
               CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
     $                      M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
     $                      RWORK, IWORK( 2*N+1 ), IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,rel)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 17 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*              Do test 17
*
               TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
     $                 ( ONE-HALF )**4
*
               TEMP1 = ZERO
               DO 190 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
     $                    ( ABSTOL+ABS( D4( J ) ) ) )
  190          CONTINUE
*
               RESULT( 17 ) = TEMP1 / TEMP2
            ELSE
               RESULT( 17 ) = ZERO
            END IF
*
*           Now ask for all eigenvalues with high absolute accuracy.
*
            NTEST = 18
            ABSTOL = UNFL + UNFL
            CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
     $                   NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
     $                   IWORK( 2*N+1 ), IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 18 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do test 18
*
            TEMP1 = ZERO
            TEMP2 = ZERO
            DO 200 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
               TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
  200       CONTINUE
*
            RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
*
*           Choose random values for IL and IU, and ask for the
*           IL-th through IU-th eigenvalues.
*
            NTEST = 19
            IF( N.LE.1 ) THEN
               IL = 1
               IU = N
            ELSE
               IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
               IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
               IF( IU.LT.IL ) THEN
                  ITEMP = IU
                  IU = IL
                  IL = ITEMP
               END IF
            END IF
*
            CALL DSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
     $                   M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
     $                   RWORK, IWORK( 2*N+1 ), IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(I)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 19 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Determine the values VL and VU of the IL-th and IU-th
*           eigenvalues and ask for all eigenvalues in this range.
*
            IF( N.GT.0 ) THEN
               IF( IL.NE.1 ) THEN
                  VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
     $                 ULP*ANORM, TWO*RTUNFL )
               ELSE
                  VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
     $                 ULP*ANORM, TWO*RTUNFL )
               END IF
               IF( IU.NE.N ) THEN
                  VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
     $                 ULP*ANORM, TWO*RTUNFL )
               ELSE
                  VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
     $                 ULP*ANORM, TWO*RTUNFL )
               END IF
            ELSE
               VL = ZERO
               VU = ONE
            END IF
*
            CALL DSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
     $                   M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
     $                   RWORK, IWORK( 2*N+1 ), IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(V)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 19 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            IF( M3.EQ.0 .AND. N.NE.0 ) THEN
               RESULT( 19 ) = ULPINV
               GO TO 280
            END IF
*
*           Do test 19
*
            TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
            TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
            IF( N.GT.0 ) THEN
               TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
            ELSE
               TEMP3 = ZERO
            END IF
*
            RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
*
*           Call ZSTEIN to compute eigenvectors corresponding to
*           eigenvalues in WA1.  (First call DSTEBZ again, to make sure
*           it returns these eigenvalues in the correct order.)
*
            NTEST = 21
            CALL DSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
     $                   NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
     $                   IWORK( 2*N+1 ), IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,B)', IINFO, N,
     $            JTYPE, IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 20 ) = ULPINV
                  RESULT( 21 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            CALL ZSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
     $                   LDU, RWORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEIN', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 20 ) = ULPINV
                  RESULT( 21 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do tests 20 and 21
*
            CALL ZSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK, RWORK,
     $                   RESULT( 20 ) )
*
*           Call ZSTEDC(I) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
            INDE = 1
            INDRWK = INDE + N
            CALL DCOPY( N, SD, 1, D1, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
            CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
            NTEST = 22
            CALL ZSTEDC( 'I', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
     $                   RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(I)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 22 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Tests 22 and 23
*
            CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
     $                   RESULT( 22 ) )
*
*           Call ZSTEDC(V) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
            CALL DCOPY( N, SD, 1, D1, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
            CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
            NTEST = 24
            CALL ZSTEDC( 'V', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
     $                   RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(V)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 24 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Tests 24 and 25
*
            CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
     $                   RESULT( 24 ) )
*
*           Call ZSTEDC(N) to compute D2, do tests.
*
*           Compute D2
*
            CALL DCOPY( N, SD, 1, D2, 1 )
            IF( N.GT.0 )
     $         CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
            CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
            NTEST = 26
            CALL ZSTEDC( 'N', N, D2, RWORK( INDE ), Z, LDU, WORK, LWEDC,
     $                   RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 26 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Test 26
*
            TEMP1 = ZERO
            TEMP2 = ZERO
*
            DO 210 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
               TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  210       CONTINUE
*
            RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
*
*           Only test ZSTEMR if IEEE compliant
*
            IF( ILAENV( 10, 'ZSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
     $          ILAENV( 11, 'ZSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
*
*           Call ZSTEMR, do test 27 (relative eigenvalue accuracy)
*
*              If S is positive definite and diagonally dominant,
*              ask for all eigenvalues with high relative accuracy.
*
               VL = ZERO
               VU = ZERO
               IL = 0
               IU = 0
               IF( JTYPE.EQ.21 .AND. CREL ) THEN
                  NTEST = 27
                  ABSTOL = UNFL + UNFL
                  CALL ZSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
     $                         M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                         RWORK, LRWORK, IWORK( 2*N+1 ), LWORK-2*N,
     $                         IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,A,rel)',
     $                  IINFO, N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 27 ) = ULPINV
                        GO TO 270
                     END IF
                  END IF
*
*              Do test 27
*
                  TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
     $                    ( ONE-HALF )**4
*
                  TEMP1 = ZERO
                  DO 220 J = 1, N
                     TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
     $                       ( ABSTOL+ABS( D4( J ) ) ) )
  220             CONTINUE
*
                  RESULT( 27 ) = TEMP1 / TEMP2
*
                  IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
                  IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
                  IF( IU.LT.IL ) THEN
                     ITEMP = IU
                     IU = IL
                     IL = ITEMP
                  END IF
*
                  IF( CRANGE ) THEN
                     NTEST = 28
                     ABSTOL = UNFL + UNFL
                     CALL ZSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
     $                            M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                            RWORK, LRWORK, IWORK( 2*N+1 ),
     $                            LWORK-2*N, IINFO )
*
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,I,rel)',
     $                     IINFO, N, JTYPE, IOLDSD
                        INFO = ABS( IINFO )
                        IF( IINFO.LT.0 ) THEN
                           RETURN
                        ELSE
                           RESULT( 28 ) = ULPINV
                           GO TO 270
                        END IF
                     END IF
*
*                 Do test 28
*
                     TEMP2 = TWO*( TWO*N-ONE )*ULP*
     $                       ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
*
                     TEMP1 = ZERO
                     DO 230 J = IL, IU
                        TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
     $                          1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
  230                CONTINUE
*
                     RESULT( 28 ) = TEMP1 / TEMP2
                  ELSE
                     RESULT( 28 ) = ZERO
                  END IF
               ELSE
                  RESULT( 27 ) = ZERO
                  RESULT( 28 ) = ZERO
               END IF
*
*           Call ZSTEMR(V,I) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
               CALL DCOPY( N, SD, 1, D5, 1 )
               IF( N.GT.0 )
     $            CALL DCOPY( N-1, SE, 1, RWORK, 1 )
               CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
               IF( CRANGE ) THEN
                  NTEST = 29
                  IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
                  IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
                  IF( IU.LT.IL ) THEN
                     ITEMP = IU
                     IU = IL
                     IL = ITEMP
                  END IF
                  CALL ZSTEMR( 'V', 'I', N, D5, RWORK, VL, VU, IL, IU,
     $                         M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                         RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                         LIWORK-2*N, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,I)', IINFO,
     $                  N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 29 ) = ULPINV
                        GO TO 280
                     END IF
                  END IF
*
*           Do Tests 29 and 30
*
*           Call ZSTEMR to compute D2, do tests.
*
*           Compute D2
*
                  CALL DCOPY( N, SD, 1, D5, 1 )
                  IF( N.GT.0 )
     $               CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
                  NTEST = 31
                  CALL ZSTEMR( 'N', 'I', N, D5, RWORK, VL, VU, IL, IU,
     $                         M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                         RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                         LIWORK-2*N, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,I)', IINFO,
     $                  N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 31 ) = ULPINV
                        GO TO 280
                     END IF
                  END IF
*
*           Do Test 31
*
                  TEMP1 = ZERO
                  TEMP2 = ZERO
*
                  DO 240 J = 1, IU - IL + 1
                     TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
     $                       ABS( D2( J ) ) )
                     TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  240             CONTINUE
*
                  RESULT( 31 ) = TEMP2 / MAX( UNFL,
     $                           ULP*MAX( TEMP1, TEMP2 ) )
*
*           Call ZSTEMR(V,V) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
                  CALL DCOPY( N, SD, 1, D5, 1 )
                  IF( N.GT.0 )
     $               CALL DCOPY( N-1, SE, 1, RWORK, 1 )
                  CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
                  NTEST = 32
*
                  IF( N.GT.0 ) THEN
                     IF( IL.NE.1 ) THEN
                        VL = D2( IL ) - MAX( HALF*
     $                       ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
     $                       TWO*RTUNFL )
                     ELSE
                        VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
     $                       ULP*ANORM, TWO*RTUNFL )
                     END IF
                     IF( IU.NE.N ) THEN
                        VU = D2( IU ) + MAX( HALF*
     $                       ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
     $                       TWO*RTUNFL )
                     ELSE
                        VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
     $                       ULP*ANORM, TWO*RTUNFL )
                     END IF
                  ELSE
                     VL = ZERO
                     VU = ONE
                  END IF
*
                  CALL ZSTEMR( 'V', 'V', N, D5, RWORK, VL, VU, IL, IU,
     $                         M, D1, Z, LDU, M, IWORK( 1 ), TRYRAC,
     $                         RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                         LIWORK-2*N, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,V)', IINFO,
     $                  N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 32 ) = ULPINV
                        GO TO 280
                     END IF
                  END IF
*
*           Do Tests 32 and 33
*
                  CALL ZSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
     $                         M, RWORK, RESULT( 32 ) )
*
*           Call ZSTEMR to compute D2, do tests.
*
*           Compute D2
*
                  CALL DCOPY( N, SD, 1, D5, 1 )
                  IF( N.GT.0 )
     $               CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
                  NTEST = 34
                  CALL ZSTEMR( 'N', 'V', N, D5, RWORK, VL, VU, IL, IU,
     $                         M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                         RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                         LIWORK-2*N, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,V)', IINFO,
     $                  N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 34 ) = ULPINV
                        GO TO 280
                     END IF
                  END IF
*
*           Do Test 34
*
                  TEMP1 = ZERO
                  TEMP2 = ZERO
*
                  DO 250 J = 1, IU - IL + 1
                     TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
     $                       ABS( D2( J ) ) )
                     TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  250             CONTINUE
*
                  RESULT( 34 ) = TEMP2 / MAX( UNFL,
     $                           ULP*MAX( TEMP1, TEMP2 ) )
               ELSE
                  RESULT( 29 ) = ZERO
                  RESULT( 30 ) = ZERO
                  RESULT( 31 ) = ZERO
                  RESULT( 32 ) = ZERO
                  RESULT( 33 ) = ZERO
                  RESULT( 34 ) = ZERO
               END IF
*
*           Call ZSTEMR(V,A) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
               CALL DCOPY( N, SD, 1, D5, 1 )
               IF( N.GT.0 )
     $            CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
               NTEST = 35
*
               CALL ZSTEMR( 'V', 'A', N, D5, RWORK, VL, VU, IL, IU,
     $                      M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                      RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                      LIWORK-2*N, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,A)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 35 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*           Do Tests 35 and 36
*
               CALL ZSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
     $                      RWORK, RESULT( 35 ) )
*
*           Call ZSTEMR to compute D2, do tests.
*
*           Compute D2
*
               CALL DCOPY( N, SD, 1, D5, 1 )
               IF( N.GT.0 )
     $            CALL DCOPY( N-1, SE, 1, RWORK, 1 )
*
               NTEST = 37
               CALL ZSTEMR( 'N', 'A', N, D5, RWORK, VL, VU, IL, IU,
     $                      M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                      RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                      LIWORK-2*N, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,A)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 37 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*           Do Test 37
*
               TEMP1 = ZERO
               TEMP2 = ZERO
*
               DO 260 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
                  TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  260          CONTINUE
*
               RESULT( 37 ) = TEMP2 / MAX( UNFL,
     $                        ULP*MAX( TEMP1, TEMP2 ) )
            END IF
  270       CONTINUE
  280       CONTINUE
            NTESTT = NTESTT + NTEST
*
*           End of Loop -- Check for RESULT(j) > THRESH
*
*           Print out tests which fail.
*
            DO 290 JR = 1, NTEST
               IF( RESULT( JR ).GE.THRESH ) THEN
*
*                 If this is the first test to fail,
*                 print a header to the data file.
*
                  IF( NERRS.EQ.0 ) THEN
                     WRITE( NOUNIT, FMT = 9998 )'ZST'
                     WRITE( NOUNIT, FMT = 9997 )
                     WRITE( NOUNIT, FMT = 9996 )
                     WRITE( NOUNIT, FMT = 9995 )'Hermitian'
                     WRITE( NOUNIT, FMT = 9994 )
*
*                    Tests performed
*
                     WRITE( NOUNIT, FMT = 9987 )
                  END IF
                  NERRS = NERRS + 1
                  IF( RESULT( JR ).LT.10000.0D0 ) THEN
                     WRITE( NOUNIT, FMT = 9989 )N, JTYPE, IOLDSD, JR,
     $                  RESULT( JR )
                  ELSE
                     WRITE( NOUNIT, FMT = 9988 )N, JTYPE, IOLDSD, JR,
     $                  RESULT( JR )
                  END IF
               END IF
  290       CONTINUE
  300    CONTINUE
  310 CONTINUE
*
*     Summary
*
      CALL DLASUM( 'ZST', NOUNIT, NERRS, NTESTT )
      RETURN
*
 9999 FORMAT( ' ZCHKST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
     $   'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
 9998 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' )
 9997 FORMAT( ' Matrix types (see ZCHKST2STG for details): ' )
*
 9996 FORMAT( / ' Special Matrices:',
     $      / '  1=Zero matrix.                        ',
     $      '  5=Diagonal: clustered entries.',
     $      / '  2=Identity matrix.                    ',
     $      '  6=Diagonal: large, evenly spaced.',
     $      / '  3=Diagonal: evenly spaced entries.    ',
     $      '  7=Diagonal: small, evenly spaced.',
     $      / '  4=Diagonal: geometr. spaced entries.' )
 9995 FORMAT( ' Dense ', A, ' Matrices:',
     $      / '  8=Evenly spaced eigenvals.            ',
     $      ' 12=Small, evenly spaced eigenvals.',
     $      / '  9=Geometrically spaced eigenvals.     ',
     $      ' 13=Matrix with random O(1) entries.',
     $      / ' 10=Clustered eigenvalues.              ',
     $      ' 14=Matrix with large random entries.',
     $      / ' 11=Large, evenly spaced eigenvals.     ',
     $      ' 15=Matrix with small random entries.' )
 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
     $      / ' 17=Positive definite, geometrically spaced eigenvlaues',
     $      / ' 18=Positive definite, clustered eigenvalues',
     $      / ' 19=Positive definite, small evenly spaced eigenvalues',
     $      / ' 20=Positive definite, large evenly spaced eigenvalues',
     $      / ' 21=Diagonally dominant tridiagonal, geometrically',
     $      ' spaced eigenvalues' )
*
 9989 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
     $      4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 )
 9988 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
     $      4( I4, ',' ), ' result ', I3, ' is', 1P, D10.3 )
*
 9987 FORMAT( / 'Test performed:  see ZCHKST2STG for details.', / )
*
*     End of ZCHKST2STG
*
      END