numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/zget22.f | 8544B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
*> \brief \b ZGET22 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W, * WORK, RWORK, RESULT ) * * .. Scalar Arguments .. * CHARACTER TRANSA, TRANSE, TRANSW * INTEGER LDA, LDE, N * .. * .. Array Arguments .. * DOUBLE PRECISION RESULT( 2 ), RWORK( * ) * COMPLEX*16 A( LDA, * ), E( LDE, * ), W( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGET22 does an eigenvector check. *> *> The basic test is: *> *> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) *> *> using the 1-norm. It also tests the normalization of E: *> *> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) *> j *> *> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a *> vector. The max-norm of a complex n-vector x in this case is the *> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANSA *> \verbatim *> TRANSA is CHARACTER*1 *> Specifies whether or not A is transposed. *> = 'N': No transpose *> = 'T': Transpose *> = 'C': Conjugate transpose *> \endverbatim *> *> \param[in] TRANSE *> \verbatim *> TRANSE is CHARACTER*1 *> Specifies whether or not E is transposed. *> = 'N': No transpose, eigenvectors are in columns of E *> = 'T': Transpose, eigenvectors are in rows of E *> = 'C': Conjugate transpose, eigenvectors are in rows of E *> \endverbatim *> *> \param[in] TRANSW *> \verbatim *> TRANSW is CHARACTER*1 *> Specifies whether or not W is transposed. *> = 'N': No transpose *> = 'T': Transpose, same as TRANSW = 'N' *> = 'C': Conjugate transpose, use -WI(j) instead of WI(j) *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The matrix whose eigenvectors are in E. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] E *> \verbatim *> E is COMPLEX*16 array, dimension (LDE,N) *> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors *> are stored in the columns of E, if TRANSE = 'T' or 'C', the *> eigenvectors are stored in the rows of E. *> \endverbatim *> *> \param[in] LDE *> \verbatim *> LDE is INTEGER *> The leading dimension of the array E. LDE >= max(1,N). *> \endverbatim *> *> \param[in] W *> \verbatim *> W is COMPLEX*16 array, dimension (N) *> The eigenvalues of A. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (N*N) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (2) *> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) *> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) *> j *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W, $ WORK, RWORK, RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANSA, TRANSE, TRANSW INTEGER LDA, LDE, N * .. * .. Array Arguments .. DOUBLE PRECISION RESULT( 2 ), RWORK( * ) COMPLEX*16 A( LDA, * ), E( LDE, * ), W( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. CHARACTER NORMA, NORME INTEGER ITRNSE, ITRNSW, J, JCOL, JOFF, JROW, JVEC DOUBLE PRECISION ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1, $ ULP, UNFL COMPLEX*16 WTEMP * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL LSAME, DLAMCH, ZLANGE * .. * .. External Subroutines .. EXTERNAL ZGEMM, ZLASET * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN * .. * .. Executable Statements .. * * Initialize RESULT (in case N=0) * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Precision' ) * ITRNSE = 0 ITRNSW = 0 NORMA = 'O' NORME = 'O' * IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN NORMA = 'I' END IF * IF( LSAME( TRANSE, 'T' ) ) THEN ITRNSE = 1 NORME = 'I' ELSE IF( LSAME( TRANSE, 'C' ) ) THEN ITRNSE = 2 NORME = 'I' END IF * IF( LSAME( TRANSW, 'C' ) ) THEN ITRNSW = 1 END IF * * Normalization of E: * ENRMIN = ONE / ULP ENRMAX = ZERO IF( ITRNSE.EQ.0 ) THEN DO 20 JVEC = 1, N TEMP1 = ZERO DO 10 J = 1, N TEMP1 = MAX( TEMP1, ABS( DBLE( E( J, JVEC ) ) )+ $ ABS( DIMAG( E( J, JVEC ) ) ) ) 10 CONTINUE ENRMIN = MIN( ENRMIN, TEMP1 ) ENRMAX = MAX( ENRMAX, TEMP1 ) 20 CONTINUE ELSE DO 30 JVEC = 1, N RWORK( JVEC ) = ZERO 30 CONTINUE * DO 50 J = 1, N DO 40 JVEC = 1, N RWORK( JVEC ) = MAX( RWORK( JVEC ), $ ABS( DBLE( E( JVEC, J ) ) )+ $ ABS( DIMAG( E( JVEC, J ) ) ) ) 40 CONTINUE 50 CONTINUE * DO 60 JVEC = 1, N ENRMIN = MIN( ENRMIN, RWORK( JVEC ) ) ENRMAX = MAX( ENRMAX, RWORK( JVEC ) ) 60 CONTINUE END IF * * Norm of A: * ANORM = MAX( ZLANGE( NORMA, N, N, A, LDA, RWORK ), UNFL ) * * Norm of E: * ENORM = MAX( ZLANGE( NORME, N, N, E, LDE, RWORK ), ULP ) * * Norm of error: * * Error = AE - EW * CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N ) * JOFF = 0 DO 100 JCOL = 1, N IF( ITRNSW.EQ.0 ) THEN WTEMP = W( JCOL ) ELSE WTEMP = DCONJG( W( JCOL ) ) END IF * IF( ITRNSE.EQ.0 ) THEN DO 70 JROW = 1, N WORK( JOFF+JROW ) = E( JROW, JCOL )*WTEMP 70 CONTINUE ELSE IF( ITRNSE.EQ.1 ) THEN DO 80 JROW = 1, N WORK( JOFF+JROW ) = E( JCOL, JROW )*WTEMP 80 CONTINUE ELSE DO 90 JROW = 1, N WORK( JOFF+JROW ) = DCONJG( E( JCOL, JROW ) )*WTEMP 90 CONTINUE END IF JOFF = JOFF + N 100 CONTINUE * CALL ZGEMM( TRANSA, TRANSE, N, N, N, CONE, A, LDA, E, LDE, -CONE, $ WORK, N ) * ERRNRM = ZLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM * * Compute RESULT(1) (avoiding under/overflow) * IF( ANORM.GT.ERRNRM ) THEN RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ONE / ULP ELSE RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP END IF END IF * * Compute RESULT(2) : the normalization error in E. * RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) / $ ( DBLE( N )*ULP ) * RETURN * * End of ZGET22 * END