numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/zget51.f | 7324B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
*> \brief \b ZGET51 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK, * RWORK, RESULT ) * * .. Scalar Arguments .. * INTEGER ITYPE, LDA, LDB, LDU, LDV, N * DOUBLE PRECISION RESULT * .. * .. Array Arguments .. * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( LDA, * ), B( LDB, * ), U( LDU, * ), * $ V( LDV, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGET51 generally checks a decomposition of the form *> *> A = U B V**H *> *> where **H means conjugate transpose and U and V are unitary. *> *> Specifically, if ITYPE=1 *> *> RESULT = | A - U B V**H | / ( |A| n ulp ) *> *> If ITYPE=2, then: *> *> RESULT = | A - B | / ( |A| n ulp ) *> *> If ITYPE=3, then: *> *> RESULT = | I - U U**H | / ( n ulp ) *> \endverbatim * * Arguments: * ========== * *> \param[in] ITYPE *> \verbatim *> ITYPE is INTEGER *> Specifies the type of tests to be performed. *> =1: RESULT = | A - U B V**H | / ( |A| n ulp ) *> =2: RESULT = | A - B | / ( |A| n ulp ) *> =3: RESULT = | I - U U**H | / ( n ulp ) *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The size of the matrix. If it is zero, ZGET51 does nothing. *> It must be at least zero. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> The original (unfactored) matrix. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. It must be at least 1 *> and at least N. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB, N) *> The factored matrix. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B. It must be at least 1 *> and at least N. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is COMPLEX*16 array, dimension (LDU, N) *> The unitary matrix on the left-hand side in the *> decomposition. *> Not referenced if ITYPE=2 *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of U. LDU must be at least N and *> at least 1. *> \endverbatim *> *> \param[in] V *> \verbatim *> V is COMPLEX*16 array, dimension (LDV, N) *> The unitary matrix on the left-hand side in the *> decomposition. *> Not referenced if ITYPE=2 *> \endverbatim *> *> \param[in] LDV *> \verbatim *> LDV is INTEGER *> The leading dimension of V. LDV must be at least N and *> at least 1. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (2*N**2) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION *> The values computed by the test specified by ITYPE. The *> value is currently limited to 1/ulp, to avoid overflow. *> Errors are flagged by RESULT=10/ulp. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK, $ RWORK, RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER ITYPE, LDA, LDB, LDU, LDV, N DOUBLE PRECISION RESULT * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), U( LDU, * ), $ V( LDV, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TEN PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER JCOL, JDIAG, JROW DOUBLE PRECISION ANORM, ULP, UNFL, WNORM * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL DLAMCH, ZLANGE * .. * .. External Subroutines .. EXTERNAL ZGEMM, ZLACPY * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Executable Statements .. * RESULT = ZERO IF( N.LE.0 ) $ RETURN * * Constants * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) * * Some Error Checks * IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN RESULT = TEN / ULP RETURN END IF * IF( ITYPE.LE.2 ) THEN * * Tests scaled by the norm(A) * ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL ) * IF( ITYPE.EQ.1 ) THEN * * ITYPE=1: Compute W = A - U B V**H * CALL ZLACPY( ' ', N, N, A, LDA, WORK, N ) CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, B, LDB, CZERO, $ WORK( N**2+1 ), N ) * CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( N**2+1 ), N, V, $ LDV, CONE, WORK, N ) * ELSE * * ITYPE=2: Compute W = A - B * CALL ZLACPY( ' ', N, N, B, LDB, WORK, N ) * DO 20 JCOL = 1, N DO 10 JROW = 1, N WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) ) $ - A( JROW, JCOL ) 10 CONTINUE 20 CONTINUE END IF * * Compute norm(W)/ ( ulp*norm(A) ) * WNORM = ZLANGE( '1', N, N, WORK, N, RWORK ) * IF( ANORM.GT.WNORM ) THEN RESULT = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) ELSE RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP ) END IF END IF * ELSE * * Tests not scaled by norm(A) * * ITYPE=3: Compute U U**H - I * CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, $ WORK, N ) * DO 30 JDIAG = 1, N WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+ $ 1 ) - CONE 30 CONTINUE * RESULT = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ), $ DBLE( N ) ) / ( N*ULP ) END IF * RETURN * * End of ZGET51 * END