numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/EIG/zhbt21.f 8061B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
*> \brief \b ZHBT21
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
*                          RWORK, RESULT )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            KA, KS, LDA, LDU, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
*       COMPLEX*16         A( LDA, * ), U( LDU, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZHBT21  generally checks a decomposition of the form
*>
*>         A = U S U**H
*>
*> where **H means conjugate transpose, A is hermitian banded, U is
*> unitary, and S is diagonal (if KS=0) or symmetric
*> tridiagonal (if KS=1).
*>
*> Specifically:
*>
*>         RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
*>         RESULT(2) = | I - U U**H | / ( n ulp )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER
*>          If UPLO='U', the upper triangle of A and V will be used and
*>          the (strictly) lower triangle will not be referenced.
*>          If UPLO='L', the lower triangle of A and V will be used and
*>          the (strictly) upper triangle will not be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The size of the matrix.  If it is zero, ZHBT21 does nothing.
*>          It must be at least zero.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*>          KA is INTEGER
*>          The bandwidth of the matrix A.  It must be at least zero.  If
*>          it is larger than N-1, then max( 0, N-1 ) will be used.
*> \endverbatim
*>
*> \param[in] KS
*> \verbatim
*>          KS is INTEGER
*>          The bandwidth of the matrix S.  It may only be zero or one.
*>          If zero, then S is diagonal, and E is not referenced.  If
*>          one, then S is symmetric tri-diagonal.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA, N)
*>          The original (unfactored) matrix.  It is assumed to be
*>          hermitian, and only the upper (UPLO='U') or only the lower
*>          (UPLO='L') will be referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  It must be at least 1
*>          and at least min( KA, N-1 ).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The diagonal of the (symmetric tri-) diagonal matrix S.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
*>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
*>          (3,2) element, etc.
*>          Not referenced if KS=0.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*>          U is COMPLEX*16 array, dimension (LDU, N)
*>          The unitary matrix in the decomposition, expressed as a
*>          dense matrix (i.e., not as a product of Householder
*>          transformations, Givens transformations, etc.)
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of U.  LDU must be at least N and
*>          at least 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (N**2)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (2)
*>          The values computed by the two tests described above.  The
*>          values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_eig
*
*  =====================================================================
      SUBROUTINE ZHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            KA, KS, LDA, LDU, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
      COMPLEX*16         A( LDA, * ), U( LDU, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER
      CHARACTER          CUPLO
      INTEGER            IKA, J, JC, JR
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHB, ZLANHP
      EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANHB, ZLANHP
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZHPR, ZHPR2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Constants
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      IKA = MAX( 0, MIN( N-1, KA ) )
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         LOWER = .FALSE.
         CUPLO = 'U'
      ELSE
         LOWER = .TRUE.
         CUPLO = 'L'
      END IF
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
*     Some Error Checks
*
*     Do Test 1
*
*     Norm of A:
*
      ANORM = MAX( ZLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL )
*
*     Compute error matrix:    Error = A - U S U**H
*
*     Copy A from SB to SP storage format.
*
      J = 0
      DO 50 JC = 1, N
         IF( LOWER ) THEN
            DO 10 JR = 1, MIN( IKA+1, N+1-JC )
               J = J + 1
               WORK( J ) = A( JR, JC )
   10       CONTINUE
            DO 20 JR = IKA + 2, N + 1 - JC
               J = J + 1
               WORK( J ) = ZERO
   20       CONTINUE
         ELSE
            DO 30 JR = IKA + 2, JC
               J = J + 1
               WORK( J ) = ZERO
   30       CONTINUE
            DO 40 JR = MIN( IKA, JC-1 ), 0, -1
               J = J + 1
               WORK( J ) = A( IKA+1-JR, JC )
   40       CONTINUE
         END IF
   50 CONTINUE
*
      DO 60 J = 1, N
         CALL ZHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
   60 CONTINUE
*
      IF( N.GT.1 .AND. KS.EQ.1 ) THEN
         DO 70 J = 1, N - 1
            CALL ZHPR2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1,
     $                  U( 1, J+1 ), 1, WORK )
   70    CONTINUE
      END IF
      WNORM = ZLANHP( '1', CUPLO, N, WORK, RWORK )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  U U**H - I
*
      CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
     $            N )
*
      DO 80 J = 1, N
         WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
   80 CONTINUE
*
      RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
     $              DBLE( N ) ) / ( N*ULP )
*
      RETURN
*
*     End of ZHBT21
*
      END