numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/EIG/zhbt21.f | 8061B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
*> \brief \b ZHBT21 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK, * RWORK, RESULT ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER KA, KS, LDA, LDU, N * .. * .. Array Arguments .. * DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * ) * COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZHBT21 generally checks a decomposition of the form *> *> A = U S U**H *> *> where **H means conjugate transpose, A is hermitian banded, U is *> unitary, and S is diagonal (if KS=0) or symmetric *> tridiagonal (if KS=1). *> *> Specifically: *> *> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and *> RESULT(2) = | I - U U**H | / ( n ulp ) *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER *> If UPLO='U', the upper triangle of A and V will be used and *> the (strictly) lower triangle will not be referenced. *> If UPLO='L', the lower triangle of A and V will be used and *> the (strictly) upper triangle will not be referenced. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The size of the matrix. If it is zero, ZHBT21 does nothing. *> It must be at least zero. *> \endverbatim *> *> \param[in] KA *> \verbatim *> KA is INTEGER *> The bandwidth of the matrix A. It must be at least zero. If *> it is larger than N-1, then max( 0, N-1 ) will be used. *> \endverbatim *> *> \param[in] KS *> \verbatim *> KS is INTEGER *> The bandwidth of the matrix S. It may only be zero or one. *> If zero, then S is diagonal, and E is not referenced. If *> one, then S is symmetric tri-diagonal. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> The original (unfactored) matrix. It is assumed to be *> hermitian, and only the upper (UPLO='U') or only the lower *> (UPLO='L') will be referenced. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. It must be at least 1 *> and at least min( KA, N-1 ). *> \endverbatim *> *> \param[in] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (N) *> The diagonal of the (symmetric tri-) diagonal matrix S. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is DOUBLE PRECISION array, dimension (N-1) *> The off-diagonal of the (symmetric tri-) diagonal matrix S. *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and *> (3,2) element, etc. *> Not referenced if KS=0. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is COMPLEX*16 array, dimension (LDU, N) *> The unitary matrix in the decomposition, expressed as a *> dense matrix (i.e., not as a product of Householder *> transformations, Givens transformations, etc.) *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of U. LDU must be at least N and *> at least 1. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (N**2) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (2) *> The values computed by the two tests described above. The *> values are currently limited to 1/ulp, to avoid overflow. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK, $ RWORK, RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER KA, KS, LDA, LDU, N * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * ) COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL LOWER CHARACTER CUPLO INTEGER IKA, J, JC, JR DOUBLE PRECISION ANORM, ULP, UNFL, WNORM * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHB, ZLANHP EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHB, ZLANHP * .. * .. External Subroutines .. EXTERNAL ZGEMM, ZHPR, ZHPR2 * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, MAX, MIN * .. * .. Executable Statements .. * * Constants * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * IKA = MAX( 0, MIN( N-1, KA ) ) * IF( LSAME( UPLO, 'U' ) ) THEN LOWER = .FALSE. CUPLO = 'U' ELSE LOWER = .TRUE. CUPLO = 'L' END IF * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) * * Some Error Checks * * Do Test 1 * * Norm of A: * ANORM = MAX( ZLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL ) * * Compute error matrix: Error = A - U S U**H * * Copy A from SB to SP storage format. * J = 0 DO 50 JC = 1, N IF( LOWER ) THEN DO 10 JR = 1, MIN( IKA+1, N+1-JC ) J = J + 1 WORK( J ) = A( JR, JC ) 10 CONTINUE DO 20 JR = IKA + 2, N + 1 - JC J = J + 1 WORK( J ) = ZERO 20 CONTINUE ELSE DO 30 JR = IKA + 2, JC J = J + 1 WORK( J ) = ZERO 30 CONTINUE DO 40 JR = MIN( IKA, JC-1 ), 0, -1 J = J + 1 WORK( J ) = A( IKA+1-JR, JC ) 40 CONTINUE END IF 50 CONTINUE * DO 60 J = 1, N CALL ZHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK ) 60 CONTINUE * IF( N.GT.1 .AND. KS.EQ.1 ) THEN DO 70 J = 1, N - 1 CALL ZHPR2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1, $ U( 1, J+1 ), 1, WORK ) 70 CONTINUE END IF WNORM = ZLANHP( '1', CUPLO, N, WORK, RWORK ) * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP ) END IF END IF * * Do Test 2 * * Compute U U**H - I * CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK, $ N ) * DO 80 J = 1, N WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE 80 CONTINUE * RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ), $ DBLE( N ) ) / ( N*ULP ) * RETURN * * End of ZHBT21 * END