numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/aladhd.f | 18693B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
*> \brief \b ALADHD * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ALADHD( IOUNIT, PATH ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER IOUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ALADHD prints header information for the driver routines test paths. *> \endverbatim * * Arguments: * ========== * *> \param[in] IOUNIT *> \verbatim *> IOUNIT is INTEGER *> The unit number to which the header information should be *> printed. *> \endverbatim *> *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The name of the path for which the header information is to *> be printed. Current paths are *> _GE: General matrices *> _GB: General band *> _GT: General Tridiagonal *> _PO: Symmetric or Hermitian positive definite *> _PS: Symmetric or Hermitian positive semi-definite *> _PP: Symmetric or Hermitian positive definite packed *> _PB: Symmetric or Hermitian positive definite band *> _PT: Symmetric or Hermitian positive definite tridiagonal *> _SY: Symmetric indefinite, *> with partial (Bunch-Kaufman) pivoting *> _SR: Symmetric indefinite, *> with rook (bounded Bunch-Kaufman) pivoting *> _SK: Symmetric indefinite, *> with rook (bounded Bunch-Kaufman) pivoting *> ( new storage format for factors: *> L and diagonal of D is stored in A, *> subdiagonal of D is stored in E ) *> _SP: Symmetric indefinite packed, *> with partial (Bunch-Kaufman) pivoting *> _HA: (complex) Hermitian , *> Assen Algorithm *> _HE: (complex) Hermitian indefinite, *> with partial (Bunch-Kaufman) pivoting *> _HR: (complex) Hermitian indefinite, *> with rook (bounded Bunch-Kaufman) pivoting *> _HK: (complex) Hermitian indefinite, *> with rook (bounded Bunch-Kaufman) pivoting *> ( new storage format for factors: *> L and diagonal of D is stored in A, *> subdiagonal of D is stored in E ) *> _HP: (complex) Hermitian indefinite packed, *> with partial (Bunch-Kaufman) pivoting *> The first character must be one of S, D, C, or Z (C or Z only *> if complex). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup aux_lin * * ===================================================================== SUBROUTINE ALADHD( IOUNIT, PATH ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER IOUNIT * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL CORZ, SORD CHARACTER C1, C3 CHARACTER*2 P2 CHARACTER*9 SYM * .. * .. External Functions .. LOGICAL LSAME, LSAMEN EXTERNAL LSAME, LSAMEN * .. * .. Executable Statements .. * IF( IOUNIT.LE.0 ) $ RETURN C1 = PATH( 1: 1 ) C3 = PATH( 3: 3 ) P2 = PATH( 2: 3 ) SORD = LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) CORZ = LSAME( C1, 'C' ) .OR. LSAME( C1, 'Z' ) IF( .NOT.( SORD .OR. CORZ ) ) $ RETURN * IF( LSAMEN( 2, P2, 'GE' ) ) THEN * * GE: General dense * WRITE( IOUNIT, FMT = 9999 )PATH WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9989 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9981 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9978 )4 WRITE( IOUNIT, FMT = 9977 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = 9972 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'GB' ) ) THEN * * GB: General band * WRITE( IOUNIT, FMT = 9998 )PATH WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9988 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9981 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9978 )4 WRITE( IOUNIT, FMT = 9977 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = 9972 )7 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'GT' ) ) THEN * * GT: General tridiagonal * WRITE( IOUNIT, FMT = 9997 )PATH WRITE( IOUNIT, FMT = 9987 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9981 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9978 )4 WRITE( IOUNIT, FMT = 9977 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'PO' ) .OR. LSAMEN( 2, P2, 'PP' ) $ .OR. LSAMEN( 2, P2, 'PS' ) ) THEN * * PO: Positive definite full * PS: Positive definite full * PP: Positive definite packed * IF( SORD ) THEN SYM = 'Symmetric' ELSE SYM = 'Hermitian' END IF IF( LSAME( C3, 'O' ) ) THEN WRITE( IOUNIT, FMT = 9996 )PATH, SYM ELSE WRITE( IOUNIT, FMT = 9995 )PATH, SYM END IF WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9985 )PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9975 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9978 )4 WRITE( IOUNIT, FMT = 9977 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'PB' ) ) THEN * * PB: Positive definite band * IF( SORD ) THEN WRITE( IOUNIT, FMT = 9994 )PATH, 'Symmetric' ELSE WRITE( IOUNIT, FMT = 9994 )PATH, 'Hermitian' END IF WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9984 )PATH WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9975 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9978 )4 WRITE( IOUNIT, FMT = 9977 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'PT' ) ) THEN * * PT: Positive definite tridiagonal * IF( SORD ) THEN WRITE( IOUNIT, FMT = 9993 )PATH, 'Symmetric' ELSE WRITE( IOUNIT, FMT = 9993 )PATH, 'Hermitian' END IF WRITE( IOUNIT, FMT = 9986 ) WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9973 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9978 )4 WRITE( IOUNIT, FMT = 9977 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'SY' ) .OR. LSAMEN( 2, P2, 'SP' ) ) THEN * * SY: Symmetric indefinite full * with partial (Bunch-Kaufman) pivoting algorithm * SP: Symmetric indefinite packed * with partial (Bunch-Kaufman) pivoting algorithm * IF( LSAME( C3, 'Y' ) ) THEN WRITE( IOUNIT, FMT = 9992 )PATH, 'Symmetric' ELSE WRITE( IOUNIT, FMT = 9991 )PATH, 'Symmetric' END IF WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) IF( SORD ) THEN WRITE( IOUNIT, FMT = 9983 ) ELSE WRITE( IOUNIT, FMT = 9982 ) END IF WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9974 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9977 )4 WRITE( IOUNIT, FMT = 9978 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'SR' ) .OR. LSAMEN( 2, P2, 'SK') ) THEN * * SR: Symmetric indefinite full, * with rook (bounded Bunch-Kaufman) pivoting algorithm * * SK: Symmetric indefinite full, * with rook (bounded Bunch-Kaufman) pivoting algorithm, * ( new storage format for factors: * L and diagonal of D is stored in A, * subdiagonal of D is stored in E ) * WRITE( IOUNIT, FMT = 9992 )PATH, 'Symmetric' * WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) IF( SORD ) THEN WRITE( IOUNIT, FMT = 9983 ) ELSE WRITE( IOUNIT, FMT = 9982 ) END IF * WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9974 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'HA' ) ) THEN * * HA: Hermitian * Aasen algorithm WRITE( IOUNIT, FMT = 9971 )PATH, 'Hermitian' * WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9983 ) * WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9974 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9977 )4 WRITE( IOUNIT, FMT = 9978 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) ELSE IF( LSAMEN( 2, P2, 'HE' ) .OR. $ LSAMEN( 2, P2, 'HP' ) ) THEN * * HE: Hermitian indefinite full * with partial (Bunch-Kaufman) pivoting algorithm * HP: Hermitian indefinite packed * with partial (Bunch-Kaufman) pivoting algorithm * IF( LSAME( C3, 'E' ) ) THEN WRITE( IOUNIT, FMT = 9992 )PATH, 'Hermitian' ELSE WRITE( IOUNIT, FMT = 9991 )PATH, 'Hermitian' END IF * WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9983 ) * WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9974 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = 9977 )4 WRITE( IOUNIT, FMT = 9978 )5 WRITE( IOUNIT, FMT = 9976 )6 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE IF( LSAMEN( 2, P2, 'HR' ) .OR. LSAMEN( 2, P2, 'HK' ) ) THEN * * HR: Hermitian indefinite full, * with rook (bounded Bunch-Kaufman) pivoting algorithm * * HK: Hermitian indefinite full, * with rook (bounded Bunch-Kaufman) pivoting algorithm, * ( new storage format for factors: * L and diagonal of D is stored in A, * subdiagonal of D is stored in E ) * WRITE( IOUNIT, FMT = 9992 )PATH, 'Hermitian' * WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' ) WRITE( IOUNIT, FMT = 9983 ) * WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' ) WRITE( IOUNIT, FMT = 9974 )1 WRITE( IOUNIT, FMT = 9980 )2 WRITE( IOUNIT, FMT = 9979 )3 WRITE( IOUNIT, FMT = '( '' Messages:'' )' ) * ELSE * * Print error message if no header is available. * WRITE( IOUNIT, FMT = 9990 )PATH END IF * * First line of header * 9999 FORMAT( / 1X, A3, ' drivers: General dense matrices' ) 9998 FORMAT( / 1X, A3, ' drivers: General band matrices' ) 9997 FORMAT( / 1X, A3, ' drivers: General tridiagonal' ) 9996 FORMAT( / 1X, A3, ' drivers: ', A9, $ ' positive definite matrices' ) 9995 FORMAT( / 1X, A3, ' drivers: ', A9, $ ' positive definite packed matrices' ) 9994 FORMAT( / 1X, A3, ' drivers: ', A9, $ ' positive definite band matrices' ) 9993 FORMAT( / 1X, A3, ' drivers: ', A9, $ ' positive definite tridiagonal' ) 9971 FORMAT( / 1X, A3, ' drivers: ', A9, ' indefinite matrices', $ ', "Aasen" Algorithm' ) 9992 FORMAT( / 1X, A3, ' drivers: ', A9, ' indefinite matrices', $ ', "rook" (bounded Bunch-Kaufman) pivoting' ) 9991 FORMAT( / 1X, A3, ' drivers: ', A9, $ ' indefinite packed matrices', $ ', partial (Bunch-Kaufman) pivoting' ) 9891 FORMAT( / 1X, A3, ' drivers: ', A9, $ ' indefinite packed matrices', $ ', "rook" (bounded Bunch-Kaufman) pivoting' ) 9990 FORMAT( / 1X, A3, ': No header available' ) * * GE matrix types * 9989 FORMAT( 4X, '1. Diagonal', 24X, '7. Last n/2 columns zero', / 4X, $ '2. Upper triangular', 16X, $ '8. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '3. Lower triangular', 16X, '9. Random, CNDNUM = 0.1/EPS', $ / 4X, '4. Random, CNDNUM = 2', 13X, $ '10. Scaled near underflow', / 4X, '5. First column zero', $ 14X, '11. Scaled near overflow', / 4X, $ '6. Last column zero' ) * * GB matrix types * 9988 FORMAT( 4X, '1. Random, CNDNUM = 2', 14X, $ '5. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '2. First column zero', 15X, '6. Random, CNDNUM = 0.1/EPS', $ / 4X, '3. Last column zero', 16X, $ '7. Scaled near underflow', / 4X, $ '4. Last n/2 columns zero', 11X, '8. Scaled near overflow' ) * * GT matrix types * 9987 FORMAT( ' Matrix types (1-6 have specified condition numbers):', $ / 4X, '1. Diagonal', 24X, '7. Random, unspecified CNDNUM', $ / 4X, '2. Random, CNDNUM = 2', 14X, '8. First column zero', $ / 4X, '3. Random, CNDNUM = sqrt(0.1/EPS)', 2X, $ '9. Last column zero', / 4X, '4. Random, CNDNUM = 0.1/EPS', $ 7X, '10. Last n/2 columns zero', / 4X, $ '5. Scaled near underflow', 10X, $ '11. Scaled near underflow', / 4X, $ '6. Scaled near overflow', 11X, '12. Scaled near overflow' ) * * PT matrix types * 9986 FORMAT( ' Matrix types (1-6 have specified condition numbers):', $ / 4X, '1. Diagonal', 24X, '7. Random, unspecified CNDNUM', $ / 4X, '2. Random, CNDNUM = 2', 14X, $ '8. First row and column zero', / 4X, $ '3. Random, CNDNUM = sqrt(0.1/EPS)', 2X, $ '9. Last row and column zero', / 4X, $ '4. Random, CNDNUM = 0.1/EPS', 7X, $ '10. Middle row and column zero', / 4X, $ '5. Scaled near underflow', 10X, $ '11. Scaled near underflow', / 4X, $ '6. Scaled near overflow', 11X, '12. Scaled near overflow' ) * * PO, PP matrix types * 9985 FORMAT( 4X, '1. Diagonal', 24X, $ '6. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '2. Random, CNDNUM = 2', 14X, '7. Random, CNDNUM = 0.1/EPS', $ / 3X, '*3. First row and column zero', 7X, $ '8. Scaled near underflow', / 3X, $ '*4. Last row and column zero', 8X, $ '9. Scaled near overflow', / 3X, $ '*5. Middle row and column zero', / 3X, $ '(* - tests error exits from ', A3, $ 'TRF, no test ratios are computed)' ) * * PB matrix types * 9984 FORMAT( 4X, '1. Random, CNDNUM = 2', 14X, $ '5. Random, CNDNUM = sqrt(0.1/EPS)', / 3X, $ '*2. First row and column zero', 7X, $ '6. Random, CNDNUM = 0.1/EPS', / 3X, $ '*3. Last row and column zero', 8X, $ '7. Scaled near underflow', / 3X, $ '*4. Middle row and column zero', 6X, $ '8. Scaled near overflow', / 3X, $ '(* - tests error exits from ', A3, $ 'TRF, no test ratios are computed)' ) * * SSY, SSP, CHE, CHP matrix types * 9983 FORMAT( 4X, '1. Diagonal', 24X, $ '6. Last n/2 rows and columns zero', / 4X, $ '2. Random, CNDNUM = 2', 14X, $ '7. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '3. First row and column zero', 7X, $ '8. Random, CNDNUM = 0.1/EPS', / 4X, $ '4. Last row and column zero', 8X, $ '9. Scaled near underflow', / 4X, $ '5. Middle row and column zero', 5X, $ '10. Scaled near overflow' ) * * CSY, CSP matrix types * 9982 FORMAT( 4X, '1. Diagonal', 24X, $ '7. Random, CNDNUM = sqrt(0.1/EPS)', / 4X, $ '2. Random, CNDNUM = 2', 14X, '8. Random, CNDNUM = 0.1/EPS', $ / 4X, '3. First row and column zero', 7X, $ '9. Scaled near underflow', / 4X, $ '4. Last row and column zero', 7X, $ '10. Scaled near overflow', / 4X, $ '5. Middle row and column zero', 5X, $ '11. Block diagonal matrix', / 4X, $ '6. Last n/2 rows and columns zero' ) * * Test ratios * 9981 FORMAT( 3X, I2, ': norm( L * U - A ) / ( N * norm(A) * EPS )' ) 9980 FORMAT( 3X, I2, ': norm( B - A * X ) / ', $ '( norm(A) * norm(X) * EPS )' ) 9979 FORMAT( 3X, I2, ': norm( X - XACT ) / ', $ '( norm(XACT) * CNDNUM * EPS )' ) 9978 FORMAT( 3X, I2, ': norm( X - XACT ) / ', $ '( norm(XACT) * (error bound) )' ) 9977 FORMAT( 3X, I2, ': (backward error) / EPS' ) 9976 FORMAT( 3X, I2, ': RCOND * CNDNUM - 1.0' ) 9975 FORMAT( 3X, I2, ': norm( U'' * U - A ) / ( N * norm(A) * EPS )', $ ', or', / 7X, 'norm( L * L'' - A ) / ( N * norm(A) * EPS )' $ ) 9974 FORMAT( 3X, I2, ': norm( U*D*U'' - A ) / ( N * norm(A) * EPS )', $ ', or', / 7X, 'norm( L*D*L'' - A ) / ( N * norm(A) * EPS )' $ ) 9973 FORMAT( 3X, I2, ': norm( U''*D*U - A ) / ( N * norm(A) * EPS )', $ ', or', / 7X, 'norm( L*D*L'' - A ) / ( N * norm(A) * EPS )' $ ) 9972 FORMAT( 3X, I2, ': abs( WORK(1) - RPVGRW ) /', $ ' ( max( WORK(1), RPVGRW ) * EPS )' ) * RETURN * * End of ALADHD * END