numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/cchkpo.f | 16784B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
*> \brief \b CCHKPO * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CCHKPO( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, * XACT, WORK, RWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NMAX, NN, NNB, NNS, NOUT * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER NBVAL( * ), NSVAL( * ), NVAL( * ) * REAL RWORK( * ) * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CCHKPO tests CPOTRF, -TRI, -TRS, -RFS, and -CON *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB contained in the vector NBVAL. *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NNB) *> The values of the blocksize NB. *> \endverbatim *> *> \param[in] NNS *> \verbatim *> NNS is INTEGER *> The number of values of NRHS contained in the vector NSVAL. *> \endverbatim *> *> \param[in] NSVAL *> \verbatim *> NSVAL is INTEGER array, dimension (NNS) *> The values of the number of right hand sides NRHS. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for N, used in dimensioning the *> work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AFAC *> \verbatim *> AFAC is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AINV *> \verbatim *> AINV is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX array, dimension (NMAX*NSMAX) *> where NSMAX is the largest entry in NSVAL. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension *> (NMAX*max(3,NSMAX)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension *> (NMAX+2*NSMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CCHKPO( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, $ XACT, WORK, RWORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NMAX, NN, NNB, NNS, NOUT REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER NBVAL( * ), NSVAL( * ), NVAL( * ) REAL RWORK( * ) COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CZERO PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) ) INTEGER NTYPES PARAMETER ( NTYPES = 9 ) INTEGER NTESTS PARAMETER ( NTESTS = 8 ) * .. * .. Local Scalars .. LOGICAL ZEROT CHARACTER DIST, TYPE, UPLO, XTYPE CHARACTER*3 PATH INTEGER I, IMAT, IN, INB, INFO, IOFF, IRHS, IUPLO, $ IZERO, K, KL, KU, LDA, MODE, N, NB, NERRS, $ NFAIL, NIMAT, NRHS, NRUN REAL ANORM, CNDNUM, RCOND, RCONDC * .. * .. Local Arrays .. CHARACTER UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) REAL RESULT( NTESTS ) * .. * .. External Functions .. REAL CLANHE, SGET06 EXTERNAL CLANHE, SGET06 * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, CERRPO, CGET04, CLACPY, $ CLAIPD, CLARHS, CLATB4, CLATMS, CPOCON, CPORFS, $ CPOT01, CPOT02, CPOT03, CPOT05, CPOTRF, CPOTRI, $ CPOTRS, XLAENV * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Complex precision' PATH( 2: 3 ) = 'PO' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL CERRPO( PATH, NOUT ) INFOT = 0 * * Do for each value of N in NVAL * DO 120 IN = 1, NN N = NVAL( IN ) LDA = MAX( N, 1 ) XTYPE = 'N' NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * IZERO = 0 DO 110 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 110 * * Skip types 3, 4, or 5 if the matrix size is too small. * ZEROT = IMAT.GE.3 .AND. IMAT.LE.5 IF( ZEROT .AND. N.LT.IMAT-2 ) $ GO TO 110 * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 100 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) * * Set up parameters with CLATB4 and generate a test matrix * with CLATMS. * CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, $ CNDNUM, DIST ) * SRNAMT = 'CLATMS' CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK, $ INFO ) * * Check error code from CLATMS. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 100 END IF * * For types 3-5, zero one row and column of the matrix to * test that INFO is returned correctly. * IF( ZEROT ) THEN IF( IMAT.EQ.3 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.4 ) THEN IZERO = N ELSE IZERO = N / 2 + 1 END IF IOFF = ( IZERO-1 )*LDA * * Set row and column IZERO of A to 0. * IF( IUPLO.EQ.1 ) THEN DO 20 I = 1, IZERO - 1 A( IOFF+I ) = CZERO 20 CONTINUE IOFF = IOFF + IZERO DO 30 I = IZERO, N A( IOFF ) = CZERO IOFF = IOFF + LDA 30 CONTINUE ELSE IOFF = IZERO DO 40 I = 1, IZERO - 1 A( IOFF ) = CZERO IOFF = IOFF + LDA 40 CONTINUE IOFF = IOFF - IZERO DO 50 I = IZERO, N A( IOFF+I ) = CZERO 50 CONTINUE END IF ELSE IZERO = 0 END IF * * Set the imaginary part of the diagonals. * CALL CLAIPD( N, A, LDA+1, 0 ) * * Do for each value of NB in NBVAL * DO 90 INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) * * Compute the L*L' or U'*U factorization of the matrix. * CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) SRNAMT = 'CPOTRF' CALL CPOTRF( UPLO, N, AFAC, LDA, INFO ) * * Check error code from CPOTRF. * IF( INFO.NE.IZERO ) THEN CALL ALAERH( PATH, 'CPOTRF', INFO, IZERO, UPLO, N, $ N, -1, -1, NB, IMAT, NFAIL, NERRS, $ NOUT ) GO TO 90 END IF * * Skip the tests if INFO is not 0. * IF( INFO.NE.0 ) $ GO TO 90 * *+ TEST 1 * Reconstruct matrix from factors and compute residual. * CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) CALL CPOT01( UPLO, N, A, LDA, AINV, LDA, RWORK, $ RESULT( 1 ) ) * *+ TEST 2 * Form the inverse and compute the residual. * CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) SRNAMT = 'CPOTRI' CALL CPOTRI( UPLO, N, AINV, LDA, INFO ) * * Check error code from CPOTRI. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'CPOTRI', INFO, 0, UPLO, N, N, $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) * CALL CPOT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA, $ RWORK, RCONDC, RESULT( 2 ) ) * * Print information about the tests that did not pass * the threshold. * DO 60 K = 1, 2 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 60 CONTINUE NRUN = NRUN + 2 * * Skip the rest of the tests unless this is the first * blocksize. * IF( INB.NE.1 ) $ GO TO 90 * DO 80 IRHS = 1, NNS NRHS = NSVAL( IRHS ) * *+ TEST 3 * Solve and compute residual for A * X = B . * SRNAMT = 'CLARHS' CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, $ NRHS, A, LDA, XACT, LDA, B, LDA, $ ISEED, INFO ) CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'CPOTRS' CALL CPOTRS( UPLO, N, NRHS, AFAC, LDA, X, LDA, $ INFO ) * * Check error code from CPOTRS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'CPOTRS', INFO, 0, UPLO, N, $ N, -1, -1, NRHS, IMAT, NFAIL, $ NERRS, NOUT ) * CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, $ LDA, RWORK, RESULT( 3 ) ) * *+ TEST 4 * Check solution from generated exact solution. * CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 4 ) ) * *+ TESTS 5, 6, and 7 * Use iterative refinement to improve the solution. * SRNAMT = 'CPORFS' CALL CPORFS( UPLO, N, NRHS, A, LDA, AFAC, LDA, B, $ LDA, X, LDA, RWORK, RWORK( NRHS+1 ), $ WORK, RWORK( 2*NRHS+1 ), INFO ) * * Check error code from CPORFS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'CPORFS', INFO, 0, UPLO, N, $ N, -1, -1, NRHS, IMAT, NFAIL, $ NERRS, NOUT ) * CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 5 ) ) CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, $ XACT, LDA, RWORK, RWORK( NRHS+1 ), $ RESULT( 6 ) ) * * Print information about the tests that did not pass * the threshold. * DO 70 K = 3, 7 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, $ IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 70 CONTINUE NRUN = NRUN + 5 80 CONTINUE * *+ TEST 8 * Get an estimate of RCOND = 1/CNDNUM. * ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK ) SRNAMT = 'CPOCON' CALL CPOCON( UPLO, N, AFAC, LDA, ANORM, RCOND, WORK, $ RWORK, INFO ) * * Check error code from CPOCON. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'CPOCON', INFO, 0, UPLO, N, N, $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) * RESULT( 8 ) = SGET06( RCOND, RCONDC ) * * Print the test ratio if it is .GE. THRESH. * IF( RESULT( 8 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9997 )UPLO, N, IMAT, 8, $ RESULT( 8 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 90 CONTINUE 100 CONTINUE 110 CONTINUE 120 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ', $ I2, ', test ', I2, ', ratio =', G12.5 ) 9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ', $ I2, ', test(', I2, ') =', G12.5 ) 9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2, $ ', test(', I2, ') =', G12.5 ) RETURN * * End of CCHKPO * END