numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/cchksy_rook.f | 27488B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
*> \brief \b CCHKSY_ROOK * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CCHKSY_ROOK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, * XACT, WORK, RWORK, IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NMAX, NN, NNB, NNS, NOUT * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * ) * REAL RWORK( * ) * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CCHKSY_ROOK tests CSYTRF_ROOK, -TRI_ROOK, -TRS_ROOK, *> and -CON_ROOK. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB contained in the vector NBVAL. *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NNB) *> The values of the blocksize NB. *> \endverbatim *> *> \param[in] NNS *> \verbatim *> NNS is INTEGER *> The number of values of NRHS contained in the vector NSVAL. *> \endverbatim *> *> \param[in] NSVAL *> \verbatim *> NSVAL is INTEGER array, dimension (NNS) *> The values of the number of right hand sides NRHS. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for N, used in dimensioning the *> work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AFAC *> \verbatim *> AFAC is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AINV *> \verbatim *> AINV is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX array, dimension (NMAX*NSMAX) *> where NSMAX is the largest entry in NSVAL. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (max(NMAX,2*NSMAX)) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (2*NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CCHKSY_ROOK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, $ XACT, WORK, RWORK, IWORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NMAX, NN, NNB, NNS, NOUT REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * ) REAL RWORK( * ) COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL ONEHALF PARAMETER ( ONEHALF = 0.5E+0 ) REAL EIGHT, SEVTEN PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 ) COMPLEX CZERO PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) ) INTEGER NTYPES PARAMETER ( NTYPES = 11 ) INTEGER NTESTS PARAMETER ( NTESTS = 7 ) * .. * .. Local Scalars .. LOGICAL TRFCON, ZEROT CHARACTER DIST, TYPE, UPLO, XTYPE CHARACTER*3 PATH, MATPATH INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS, $ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE, $ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT REAL ALPHA, ANORM, CNDNUM, CONST, SING_MAX, $ SING_MIN, RCOND, RCONDC, STEMP * .. * .. Local Arrays .. CHARACTER UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) REAL RESULT( NTESTS ) COMPLEX BLOCK( 2, 2 ), CDUMMY( 1 ) * .. * .. External Functions .. REAL CLANGE, CLANSY, SGET06 EXTERNAL CLANGE, CLANSY, SGET06 * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, CERRSY, CGESVD, CGET04, $ CLACPY, CLARHS, CLATB4, CLATMS, CLATSY, CSYT02, $ CSYT03, CSYCON_ROOK, CSYT01_ROOK, CSYTRF_ROOK, $ CSYTRI_ROOK, CSYTRS_ROOK, XLAENV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, SQRT * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT * * Test path * PATH( 1: 1 ) = 'Complex precision' PATH( 2: 3 ) = 'SR' * * Path to generate matrices * MATPATH( 1: 1 ) = 'Complex precision' MATPATH( 2: 3 ) = 'SY' * NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL CERRSY( PATH, NOUT ) INFOT = 0 * * Set the minimum block size for which the block routine should * be used, which will be later returned by ILAENV * CALL XLAENV( 2, 2 ) * * Do for each value of N in NVAL * DO 270 IN = 1, NN N = NVAL( IN ) LDA = MAX( N, 1 ) XTYPE = 'N' NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * IZERO = 0 * * Do for each value of matrix type IMAT * DO 260 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 260 * * Skip types 3, 4, 5, or 6 if the matrix size is too small. * ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 IF( ZEROT .AND. N.LT.IMAT-2 ) $ GO TO 260 * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 250 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) * * Begin generate test matrix A. * IF( IMAT.NE.NTYPES ) THEN * * Set up parameters with CLATB4 for the matrix generator * based on the type of matrix to be generated. * CALL CLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU, ANORM, $ MODE, CNDNUM, DIST ) * * Generate a matrix with CLATMS. * SRNAMT = 'CLATMS' CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, $ WORK, INFO ) * * Check error code from CLATMS and handle error. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) * * Skip all tests for this generated matrix * GO TO 250 END IF * * For matrix types 3-6, zero one or more rows and * columns of the matrix to test that INFO is returned * correctly. * IF( ZEROT ) THEN IF( IMAT.EQ.3 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.4 ) THEN IZERO = N ELSE IZERO = N / 2 + 1 END IF * IF( IMAT.LT.6 ) THEN * * Set row and column IZERO to zero. * IF( IUPLO.EQ.1 ) THEN IOFF = ( IZERO-1 )*LDA DO 20 I = 1, IZERO - 1 A( IOFF+I ) = CZERO 20 CONTINUE IOFF = IOFF + IZERO DO 30 I = IZERO, N A( IOFF ) = CZERO IOFF = IOFF + LDA 30 CONTINUE ELSE IOFF = IZERO DO 40 I = 1, IZERO - 1 A( IOFF ) = CZERO IOFF = IOFF + LDA 40 CONTINUE IOFF = IOFF - IZERO DO 50 I = IZERO, N A( IOFF+I ) = CZERO 50 CONTINUE END IF ELSE IF( IUPLO.EQ.1 ) THEN * * Set the first IZERO rows and columns to zero. * IOFF = 0 DO 70 J = 1, N I2 = MIN( J, IZERO ) DO 60 I = 1, I2 A( IOFF+I ) = CZERO 60 CONTINUE IOFF = IOFF + LDA 70 CONTINUE ELSE * * Set the last IZERO rows and columns to zero. * IOFF = 0 DO 90 J = 1, N I1 = MAX( J, IZERO ) DO 80 I = I1, N A( IOFF+I ) = CZERO 80 CONTINUE IOFF = IOFF + LDA 90 CONTINUE END IF END IF ELSE IZERO = 0 END IF * ELSE * * For matrix kind IMAT = 11, generate special block * diagonal matrix to test alternate code * for the 2 x 2 blocks. * CALL CLATSY( UPLO, N, A, LDA, ISEED ) * END IF * * End generate test matrix A. * * * Do for each value of NB in NBVAL * DO 240 INB = 1, NNB * * Set the optimal blocksize, which will be later * returned by ILAENV. * NB = NBVAL( INB ) CALL XLAENV( 1, NB ) * * Copy the test matrix A into matrix AFAC which * will be factorized in place. This is needed to * preserve the test matrix A for subsequent tests. * CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) * * Compute the L*D*L**T or U*D*U**T factorization of the * matrix. IWORK stores details of the interchanges and * the block structure of D. AINV is a work array for * block factorization, LWORK is the length of AINV. * LWORK = MAX( 2, NB )*LDA SRNAMT = 'CSYTRF_ROOK' CALL CSYTRF_ROOK( UPLO, N, AFAC, LDA, IWORK, AINV, $ LWORK, INFO ) * * Adjust the expected value of INFO to account for * pivoting. * K = IZERO IF( K.GT.0 ) THEN 100 CONTINUE IF( IWORK( K ).LT.0 ) THEN IF( IWORK( K ).NE.-K ) THEN K = -IWORK( K ) GO TO 100 END IF ELSE IF( IWORK( K ).NE.K ) THEN K = IWORK( K ) GO TO 100 END IF END IF * * Check error code from CSYTRF_ROOK and handle error. * IF( INFO.NE.K) $ CALL ALAERH( PATH, 'CSYTRF_ROOK', INFO, K, $ UPLO, N, N, -1, -1, NB, IMAT, $ NFAIL, NERRS, NOUT ) * * Set the condition estimate flag if the INFO is not 0. * IF( INFO.NE.0 ) THEN TRFCON = .TRUE. ELSE TRFCON = .FALSE. END IF * *+ TEST 1 * Reconstruct matrix from factors and compute residual. * CALL CSYT01_ROOK( UPLO, N, A, LDA, AFAC, LDA, IWORK, $ AINV, LDA, RWORK, RESULT( 1 ) ) NT = 1 * *+ TEST 2 * Form the inverse and compute the residual, * if the factorization was competed without INFO > 0 * (i.e. there is no zero rows and columns). * Do it only for the first block size. * IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) SRNAMT = 'CSYTRI_ROOK' CALL CSYTRI_ROOK( UPLO, N, AINV, LDA, IWORK, WORK, $ INFO ) * * Check error code from CSYTRI_ROOK and handle error. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'CSYTRI_ROOK', INFO, -1, $ UPLO, N, N, -1, -1, -1, IMAT, $ NFAIL, NERRS, NOUT ) * * Compute the residual for a symmetric matrix times * its inverse. * CALL CSYT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA, $ RWORK, RCONDC, RESULT( 2 ) ) NT = 2 END IF * * Print information about the tests that did not pass * the threshold. * DO 110 K = 1, NT IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 110 CONTINUE NRUN = NRUN + NT * *+ TEST 3 * Compute largest element in U or L * RESULT( 3 ) = ZERO STEMP = ZERO * CONST = ( ( ALPHA**2-ONE ) / ( ALPHA**2-ONEHALF ) ) / $ ( ONE-ALPHA ) * IF( IUPLO.EQ.1 ) THEN * * Compute largest element in U * K = N 120 CONTINUE IF( K.LE.1 ) $ GO TO 130 * IF( IWORK( K ).GT.ZERO ) THEN * * Get max absolute value from elements * in column k in in U * STEMP = CLANGE( 'M', K-1, 1, $ AFAC( ( K-1 )*LDA+1 ), LDA, RWORK ) ELSE * * Get max absolute value from elements * in columns k and k-1 in U * STEMP = CLANGE( 'M', K-2, 2, $ AFAC( ( K-2 )*LDA+1 ), LDA, RWORK ) K = K - 1 * END IF * * STEMP should be bounded by CONST * STEMP = STEMP - CONST + THRESH IF( STEMP.GT.RESULT( 3 ) ) $ RESULT( 3 ) = STEMP * K = K - 1 * GO TO 120 130 CONTINUE * ELSE * * Compute largest element in L * K = 1 140 CONTINUE IF( K.GE.N ) $ GO TO 150 * IF( IWORK( K ).GT.ZERO ) THEN * * Get max absolute value from elements * in column k in in L * STEMP = CLANGE( 'M', N-K, 1, $ AFAC( ( K-1 )*LDA+K+1 ), LDA, RWORK ) ELSE * * Get max absolute value from elements * in columns k and k+1 in L * STEMP = CLANGE( 'M', N-K-1, 2, $ AFAC( ( K-1 )*LDA+K+2 ), LDA, RWORK ) K = K + 1 * END IF * * STEMP should be bounded by CONST * STEMP = STEMP - CONST + THRESH IF( STEMP.GT.RESULT( 3 ) ) $ RESULT( 3 ) = STEMP * K = K + 1 * GO TO 140 150 CONTINUE END IF * * *+ TEST 4 * Compute largest 2-Norm (condition number) * of 2-by-2 diag blocks * RESULT( 4 ) = ZERO STEMP = ZERO * CONST = ( ( ALPHA**2-ONE ) / ( ALPHA**2-ONEHALF ) )* $ ( ( ONE + ALPHA ) / ( ONE - ALPHA ) ) * IF( IUPLO.EQ.1 ) THEN * * Loop backward for UPLO = 'U' * K = N 160 CONTINUE IF( K.LE.1 ) $ GO TO 170 * IF( IWORK( K ).LT.ZERO ) THEN * * Get the two singular values * (real and non-negative) of a 2-by-2 block, * store them in RWORK array * BLOCK( 1, 1 ) = AFAC( ( K-2 )*LDA+K-1 ) BLOCK( 1, 2 ) = AFAC( (K-1)*LDA+K-1 ) BLOCK( 2, 1 ) = BLOCK( 1, 2 ) BLOCK( 2, 2 ) = AFAC( (K-1)*LDA+K ) * CALL CGESVD( 'N', 'N', 2, 2, BLOCK, 2, RWORK, $ CDUMMY, 1, CDUMMY, 1, $ WORK, 6, RWORK( 3 ), INFO ) * * SING_MAX = RWORK( 1 ) SING_MIN = RWORK( 2 ) * STEMP = SING_MAX / SING_MIN * * STEMP should be bounded by CONST * STEMP = STEMP - CONST + THRESH IF( STEMP.GT.RESULT( 4 ) ) $ RESULT( 4 ) = STEMP K = K - 1 * END IF * K = K - 1 * GO TO 160 170 CONTINUE * ELSE * * Loop forward for UPLO = 'L' * K = 1 180 CONTINUE IF( K.GE.N ) $ GO TO 190 * IF( IWORK( K ).LT.ZERO ) THEN * * Get the two singular values * (real and non-negative) of a 2-by-2 block, * store them in RWORK array * BLOCK( 1, 1 ) = AFAC( ( K-1 )*LDA+K ) BLOCK( 2, 1 ) = AFAC( ( K-1 )*LDA+K+1 ) BLOCK( 1, 2 ) = BLOCK( 2, 1 ) BLOCK( 2, 2 ) = AFAC( K*LDA+K+1 ) * CALL CGESVD( 'N', 'N', 2, 2, BLOCK, 2, RWORK, $ CDUMMY, 1, CDUMMY, 1, $ WORK, 6, RWORK(3), INFO ) * SING_MAX = RWORK( 1 ) SING_MIN = RWORK( 2 ) * STEMP = SING_MAX / SING_MIN * * STEMP should be bounded by CONST * STEMP = STEMP - CONST + THRESH IF( STEMP.GT.RESULT( 4 ) ) $ RESULT( 4 ) = STEMP K = K + 1 * END IF * K = K + 1 * GO TO 180 190 CONTINUE END IF * * Print information about the tests that did not pass * the threshold. * DO 200 K = 3, 4 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 200 CONTINUE NRUN = NRUN + 2 * * Skip the other tests if this is not the first block * size. * IF( INB.GT.1 ) $ GO TO 240 * * Do only the condition estimate if INFO is not 0. * IF( TRFCON ) THEN RCONDC = ZERO GO TO 230 END IF * * Do for each value of NRHS in NSVAL. * DO 220 IRHS = 1, NNS NRHS = NSVAL( IRHS ) * *+ TEST 5 ( Using TRS_ROOK) * Solve and compute residual for A * X = B. * * Choose a set of NRHS random solution vectors * stored in XACT and set up the right hand side B * SRNAMT = 'CLARHS' CALL CLARHS( MATPATH, XTYPE, UPLO, ' ', N, N, $ KL, KU, NRHS, A, LDA, XACT, LDA, $ B, LDA, ISEED, INFO ) CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'CSYTRS_ROOK' CALL CSYTRS_ROOK( UPLO, N, NRHS, AFAC, LDA, IWORK, $ X, LDA, INFO ) * * Check error code from CSYTRS_ROOK and handle error. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'CSYTRS_ROOK', INFO, 0, $ UPLO, N, N, -1, -1, NRHS, IMAT, $ NFAIL, NERRS, NOUT ) * CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) * * Compute the residual for the solution * CALL CSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, $ LDA, RWORK, RESULT( 5 ) ) * *+ TEST 6 * Check solution from generated exact solution. * CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 6 ) ) * * Print information about the tests that did not pass * the threshold. * DO 210 K = 5, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, $ IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 210 CONTINUE NRUN = NRUN + 2 * * End do for each value of NRHS in NSVAL. * 220 CONTINUE * *+ TEST 7 * Get an estimate of RCOND = 1/CNDNUM. * 230 CONTINUE ANORM = CLANSY( '1', UPLO, N, A, LDA, RWORK ) SRNAMT = 'CSYCON_ROOK' CALL CSYCON_ROOK( UPLO, N, AFAC, LDA, IWORK, ANORM, $ RCOND, WORK, INFO ) * * Check error code from CSYCON_ROOK and handle error. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'CSYCON_ROOK', INFO, 0, $ UPLO, N, N, -1, -1, -1, IMAT, $ NFAIL, NERRS, NOUT ) * * Compute the test ratio to compare values of RCOND * RESULT( 7 ) = SGET06( RCOND, RCONDC ) * * Print information about the tests that did not pass * the threshold. * IF( RESULT( 7 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9997 )UPLO, N, IMAT, 7, $ RESULT( 7 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 240 CONTINUE * 250 CONTINUE 260 CONTINUE 270 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ', $ I2, ', test ', I2, ', ratio =', G12.5 ) 9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ', $ I2, ', test(', I2, ') =', G12.5 ) 9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2, $ ', test(', I2, ') =', G12.5 ) RETURN * * End of CCHKSY_ROOK * END