numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/cdrvgb.f | 32469B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
*> \brief \b CDRVGB * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA, * AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK, * RWORK, IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER LA, LAFB, NN, NOUT, NRHS * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), NVAL( * ) * REAL RWORK( * ), S( * ) * COMPLEX A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CDRVGB tests the driver routines CGBSV and -SVX. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand side vectors to be generated for *> each linear system. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX array, dimension (LA) *> \endverbatim *> *> \param[in] LA *> \verbatim *> LA is INTEGER *> The length of the array A. LA >= (2*NMAX-1)*NMAX *> where NMAX is the largest entry in NVAL. *> \endverbatim *> *> \param[out] AFB *> \verbatim *> AFB is COMPLEX array, dimension (LAFB) *> \endverbatim *> *> \param[in] LAFB *> \verbatim *> LAFB is INTEGER *> The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX *> where NMAX is the largest entry in NVAL. *> \endverbatim *> *> \param[out] ASAV *> \verbatim *> ASAV is COMPLEX array, dimension (LA) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] BSAV *> \verbatim *> BSAV is COMPLEX array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension (2*NMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension *> (NMAX*max(3,NRHS,NMAX)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension *> (NMAX+2*NRHS) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA, $ AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK, $ RWORK, IWORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER LA, LAFB, NN, NOUT, NRHS REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NVAL( * ) REAL RWORK( * ), S( * ) COMPLEX A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) INTEGER NTYPES PARAMETER ( NTYPES = 8 ) INTEGER NTESTS PARAMETER ( NTESTS = 7 ) INTEGER NTRAN PARAMETER ( NTRAN = 3 ) * .. * .. Local Scalars .. LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE CHARACTER*3 PATH INTEGER I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN, $ INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU, $ LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS, $ NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT REAL AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV, $ CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO, $ ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW * .. * .. Local Arrays .. CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN ) INTEGER ISEED( 4 ), ISEEDY( 4 ) REAL RDUM( 1 ), RESULT( NTESTS ) * .. * .. External Functions .. LOGICAL LSAME REAL CLANGB, CLANGE, CLANTB, SGET06, SLAMCH EXTERNAL LSAME, CLANGB, CLANGE, CLANTB, SGET06, SLAMCH * .. * .. External Subroutines .. EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGBEQU, CGBSV, $ CGBSVX, CGBT01, CGBT02, CGBT05, CGBTRF, CGBTRS, $ CGET04, CLACPY, CLAQGB, CLARHS, CLASET, CLATB4, $ CLATMS, XLAENV * .. * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA TRANSS / 'N', 'T', 'C' / DATA FACTS / 'F', 'N', 'E' / DATA EQUEDS / 'N', 'R', 'C', 'B' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Complex precision' PATH( 2: 3 ) = 'GB' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL CERRVX( PATH, NOUT ) INFOT = 0 * * Set the block size and minimum block size for testing. * NB = 1 NBMIN = 2 CALL XLAENV( 1, NB ) CALL XLAENV( 2, NBMIN ) * * Do for each value of N in NVAL * DO 150 IN = 1, NN N = NVAL( IN ) LDB = MAX( N, 1 ) XTYPE = 'N' * * Set limits on the number of loop iterations. * NKL = MAX( 1, MIN( N, 4 ) ) IF( N.EQ.0 ) $ NKL = 1 NKU = NKL NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * DO 140 IKL = 1, NKL * * Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes * it easier to skip redundant values for small values of N. * IF( IKL.EQ.1 ) THEN KL = 0 ELSE IF( IKL.EQ.2 ) THEN KL = MAX( N-1, 0 ) ELSE IF( IKL.EQ.3 ) THEN KL = ( 3*N-1 ) / 4 ELSE IF( IKL.EQ.4 ) THEN KL = ( N+1 ) / 4 END IF DO 130 IKU = 1, NKU * * Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order * makes it easier to skip redundant values for small * values of N. * IF( IKU.EQ.1 ) THEN KU = 0 ELSE IF( IKU.EQ.2 ) THEN KU = MAX( N-1, 0 ) ELSE IF( IKU.EQ.3 ) THEN KU = ( 3*N-1 ) / 4 ELSE IF( IKU.EQ.4 ) THEN KU = ( N+1 ) / 4 END IF * * Check that A and AFB are big enough to generate this * matrix. * LDA = KL + KU + 1 LDAFB = 2*KL + KU + 1 IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) IF( LDA*N.GT.LA ) THEN WRITE( NOUT, FMT = 9999 )LA, N, KL, KU, $ N*( KL+KU+1 ) NERRS = NERRS + 1 END IF IF( LDAFB*N.GT.LAFB ) THEN WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU, $ N*( 2*KL+KU+1 ) NERRS = NERRS + 1 END IF GO TO 130 END IF * DO 120 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 120 * * Skip types 2, 3, or 4 if the matrix is too small. * ZEROT = IMAT.GE.2 .AND. IMAT.LE.4 IF( ZEROT .AND. N.LT.IMAT-1 ) $ GO TO 120 * * Set up parameters with CLATB4 and generate a * test matrix with CLATMS. * CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, $ MODE, CNDNUM, DIST ) RCONDC = ONE / CNDNUM * SRNAMT = 'CLATMS' CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK, $ INFO ) * * Check the error code from CLATMS. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, $ KL, KU, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 120 END IF * * For types 2, 3, and 4, zero one or more columns of * the matrix to test that INFO is returned correctly. * IZERO = 0 IF( ZEROT ) THEN IF( IMAT.EQ.2 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.3 ) THEN IZERO = N ELSE IZERO = N / 2 + 1 END IF IOFF = ( IZERO-1 )*LDA IF( IMAT.LT.4 ) THEN I1 = MAX( 1, KU+2-IZERO ) I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) ) DO 20 I = I1, I2 A( IOFF+I ) = ZERO 20 CONTINUE ELSE DO 40 J = IZERO, N DO 30 I = MAX( 1, KU+2-J ), $ MIN( KL+KU+1, KU+1+( N-J ) ) A( IOFF+I ) = ZERO 30 CONTINUE IOFF = IOFF + LDA 40 CONTINUE END IF END IF * * Save a copy of the matrix A in ASAV. * CALL CLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA ) * DO 110 IEQUED = 1, 4 EQUED = EQUEDS( IEQUED ) IF( IEQUED.EQ.1 ) THEN NFACT = 3 ELSE NFACT = 1 END IF * DO 100 IFACT = 1, NFACT FACT = FACTS( IFACT ) PREFAC = LSAME( FACT, 'F' ) NOFACT = LSAME( FACT, 'N' ) EQUIL = LSAME( FACT, 'E' ) * IF( ZEROT ) THEN IF( PREFAC ) $ GO TO 100 RCONDO = ZERO RCONDI = ZERO * ELSE IF( .NOT.NOFACT ) THEN * * Compute the condition number for comparison * with the value returned by SGESVX (FACT = * 'N' reuses the condition number from the * previous iteration with FACT = 'F'). * CALL CLACPY( 'Full', KL+KU+1, N, ASAV, LDA, $ AFB( KL+1 ), LDAFB ) IF( EQUIL .OR. IEQUED.GT.1 ) THEN * * Compute row and column scale factors to * equilibrate the matrix A. * CALL CGBEQU( N, N, KL, KU, AFB( KL+1 ), $ LDAFB, S, S( N+1 ), ROWCND, $ COLCND, AMAX, INFO ) IF( INFO.EQ.0 .AND. N.GT.0 ) THEN IF( LSAME( EQUED, 'R' ) ) THEN ROWCND = ZERO COLCND = ONE ELSE IF( LSAME( EQUED, 'C' ) ) THEN ROWCND = ONE COLCND = ZERO ELSE IF( LSAME( EQUED, 'B' ) ) THEN ROWCND = ZERO COLCND = ZERO END IF * * Equilibrate the matrix. * CALL CLAQGB( N, N, KL, KU, AFB( KL+1 ), $ LDAFB, S, S( N+1 ), $ ROWCND, COLCND, AMAX, $ EQUED ) END IF END IF * * Save the condition number of the * non-equilibrated system for use in CGET04. * IF( EQUIL ) THEN ROLDO = RCONDO ROLDI = RCONDI END IF * * Compute the 1-norm and infinity-norm of A. * ANORMO = CLANGB( '1', N, KL, KU, AFB( KL+1 ), $ LDAFB, RWORK ) ANORMI = CLANGB( 'I', N, KL, KU, AFB( KL+1 ), $ LDAFB, RWORK ) * * Factor the matrix A. * CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK, $ INFO ) * * Form the inverse of A. * CALL CLASET( 'Full', N, N, CMPLX( ZERO ), $ CMPLX( ONE ), WORK, LDB ) SRNAMT = 'CGBTRS' CALL CGBTRS( 'No transpose', N, KL, KU, N, $ AFB, LDAFB, IWORK, WORK, LDB, $ INFO ) * * Compute the 1-norm condition number of A. * AINVNM = CLANGE( '1', N, N, WORK, LDB, $ RWORK ) IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCONDO = ONE ELSE RCONDO = ( ONE / ANORMO ) / AINVNM END IF * * Compute the infinity-norm condition number * of A. * AINVNM = CLANGE( 'I', N, N, WORK, LDB, $ RWORK ) IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCONDI = ONE ELSE RCONDI = ( ONE / ANORMI ) / AINVNM END IF END IF * DO 90 ITRAN = 1, NTRAN * * Do for each value of TRANS. * TRANS = TRANSS( ITRAN ) IF( ITRAN.EQ.1 ) THEN RCONDC = RCONDO ELSE RCONDC = RCONDI END IF * * Restore the matrix A. * CALL CLACPY( 'Full', KL+KU+1, N, ASAV, LDA, $ A, LDA ) * * Form an exact solution and set the right hand * side. * SRNAMT = 'CLARHS' CALL CLARHS( PATH, XTYPE, 'Full', TRANS, N, $ N, KL, KU, NRHS, A, LDA, XACT, $ LDB, B, LDB, ISEED, INFO ) XTYPE = 'C' CALL CLACPY( 'Full', N, NRHS, B, LDB, BSAV, $ LDB ) * IF( NOFACT .AND. ITRAN.EQ.1 ) THEN * * --- Test CGBSV --- * * Compute the LU factorization of the matrix * and solve the system. * CALL CLACPY( 'Full', KL+KU+1, N, A, LDA, $ AFB( KL+1 ), LDAFB ) CALL CLACPY( 'Full', N, NRHS, B, LDB, X, $ LDB ) * SRNAMT = 'CGBSV ' CALL CGBSV( N, KL, KU, NRHS, AFB, LDAFB, $ IWORK, X, LDB, INFO ) * * Check error code from CGBSV . * IF( INFO.NE.IZERO ) $ CALL ALAERH( PATH, 'CGBSV ', INFO, $ IZERO, ' ', N, N, KL, KU, $ NRHS, IMAT, NFAIL, NERRS, $ NOUT ) * * Reconstruct matrix from factors and * compute residual. * CALL CGBT01( N, N, KL, KU, A, LDA, AFB, $ LDAFB, IWORK, WORK, $ RESULT( 1 ) ) NT = 1 IF( IZERO.EQ.0 ) THEN * * Compute residual of the computed * solution. * CALL CLACPY( 'Full', N, NRHS, B, LDB, $ WORK, LDB ) CALL CGBT02( 'No transpose', N, N, KL, $ KU, NRHS, A, LDA, X, LDB, $ WORK, LDB, RWORK, $ RESULT( 2 ) ) * * Check solution from generated exact * solution. * CALL CGET04( N, NRHS, X, LDB, XACT, $ LDB, RCONDC, RESULT( 3 ) ) NT = 3 END IF * * Print information about the tests that did * not pass the threshold. * DO 50 K = 1, NT IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) WRITE( NOUT, FMT = 9997 )'CGBSV ', $ N, KL, KU, IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 50 CONTINUE NRUN = NRUN + NT END IF * * --- Test CGBSVX --- * IF( .NOT.PREFAC ) $ CALL CLASET( 'Full', 2*KL+KU+1, N, $ CMPLX( ZERO ), CMPLX( ZERO ), $ AFB, LDAFB ) CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), $ CMPLX( ZERO ), X, LDB ) IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN * * Equilibrate the matrix if FACT = 'F' and * EQUED = 'R', 'C', or 'B'. * CALL CLAQGB( N, N, KL, KU, A, LDA, S, $ S( N+1 ), ROWCND, COLCND, $ AMAX, EQUED ) END IF * * Solve the system and compute the condition * number and error bounds using CGBSVX. * SRNAMT = 'CGBSVX' CALL CGBSVX( FACT, TRANS, N, KL, KU, NRHS, A, $ LDA, AFB, LDAFB, IWORK, EQUED, $ S, S( LDB+1 ), B, LDB, X, LDB, $ RCOND, RWORK, RWORK( NRHS+1 ), $ WORK, RWORK( 2*NRHS+1 ), INFO ) * * Check the error code from CGBSVX. * IF( INFO.NE.IZERO ) $ CALL ALAERH( PATH, 'CGBSVX', INFO, IZERO, $ FACT // TRANS, N, N, KL, KU, $ NRHS, IMAT, NFAIL, NERRS, $ NOUT ) * Compare RWORK(2*NRHS+1) from CGBSVX with the * computed reciprocal pivot growth RPVGRW * IF( INFO.NE.0 .AND. INFO.LE.N) THEN ANRMPV = ZERO DO 70 J = 1, INFO DO 60 I = MAX( KU+2-J, 1 ), $ MIN( N+KU+1-J, KL+KU+1 ) ANRMPV = MAX( ANRMPV, $ ABS( A( I+( J-1 )*LDA ) ) ) 60 CONTINUE 70 CONTINUE RPVGRW = CLANTB( 'M', 'U', 'N', INFO, $ MIN( INFO-1, KL+KU ), $ AFB( MAX( 1, KL+KU+2-INFO ) ), $ LDAFB, RDUM ) IF( RPVGRW.EQ.ZERO ) THEN RPVGRW = ONE ELSE RPVGRW = ANRMPV / RPVGRW END IF ELSE RPVGRW = CLANTB( 'M', 'U', 'N', N, KL+KU, $ AFB, LDAFB, RDUM ) IF( RPVGRW.EQ.ZERO ) THEN RPVGRW = ONE ELSE RPVGRW = CLANGB( 'M', N, KL, KU, A, $ LDA, RDUM ) / RPVGRW END IF END IF RESULT( 7 ) = ABS( RPVGRW-RWORK( 2*NRHS+1 ) ) $ / MAX( RWORK( 2*NRHS+1 ), $ RPVGRW ) / SLAMCH( 'E' ) * IF( .NOT.PREFAC ) THEN * * Reconstruct matrix from factors and * compute residual. * CALL CGBT01( N, N, KL, KU, A, LDA, AFB, $ LDAFB, IWORK, WORK, $ RESULT( 1 ) ) K1 = 1 ELSE K1 = 2 END IF * IF( INFO.EQ.0 ) THEN TRFCON = .FALSE. * * Compute residual of the computed solution. * CALL CLACPY( 'Full', N, NRHS, BSAV, LDB, $ WORK, LDB ) CALL CGBT02( TRANS, N, N, KL, KU, NRHS, $ ASAV, LDA, X, LDB, WORK, LDB, $ RWORK( 2*NRHS+1 ), $ RESULT( 2 ) ) * * Check solution from generated exact * solution. * IF( NOFACT .OR. ( PREFAC .AND. $ LSAME( EQUED, 'N' ) ) ) THEN CALL CGET04( N, NRHS, X, LDB, XACT, $ LDB, RCONDC, RESULT( 3 ) ) ELSE IF( ITRAN.EQ.1 ) THEN ROLDC = ROLDO ELSE ROLDC = ROLDI END IF CALL CGET04( N, NRHS, X, LDB, XACT, $ LDB, ROLDC, RESULT( 3 ) ) END IF * * Check the error bounds from iterative * refinement. * CALL CGBT05( TRANS, N, KL, KU, NRHS, ASAV, $ LDA, BSAV, LDB, X, LDB, XACT, $ LDB, RWORK, RWORK( NRHS+1 ), $ RESULT( 4 ) ) ELSE TRFCON = .TRUE. END IF * * Compare RCOND from CGBSVX with the computed * value in RCONDC. * RESULT( 6 ) = SGET06( RCOND, RCONDC ) * * Print information about the tests that did * not pass the threshold. * IF( .NOT.TRFCON ) THEN DO 80 K = K1, NTESTS IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) IF( PREFAC ) THEN WRITE( NOUT, FMT = 9995 ) $ 'CGBSVX', FACT, TRANS, N, KL, $ KU, EQUED, IMAT, K, $ RESULT( K ) ELSE WRITE( NOUT, FMT = 9996 ) $ 'CGBSVX', FACT, TRANS, N, KL, $ KU, IMAT, K, RESULT( K ) END IF NFAIL = NFAIL + 1 END IF 80 CONTINUE NRUN = NRUN + NTESTS - K1 + 1 ELSE IF( RESULT( 1 ).GE.THRESH .AND. .NOT. $ PREFAC ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) IF( PREFAC ) THEN WRITE( NOUT, FMT = 9995 )'CGBSVX', $ FACT, TRANS, N, KL, KU, EQUED, $ IMAT, 1, RESULT( 1 ) ELSE WRITE( NOUT, FMT = 9996 )'CGBSVX', $ FACT, TRANS, N, KL, KU, IMAT, 1, $ RESULT( 1 ) END IF NFAIL = NFAIL + 1 NRUN = NRUN + 1 END IF IF( RESULT( 6 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) IF( PREFAC ) THEN WRITE( NOUT, FMT = 9995 )'CGBSVX', $ FACT, TRANS, N, KL, KU, EQUED, $ IMAT, 6, RESULT( 6 ) ELSE WRITE( NOUT, FMT = 9996 )'CGBSVX', $ FACT, TRANS, N, KL, KU, IMAT, 6, $ RESULT( 6 ) END IF NFAIL = NFAIL + 1 NRUN = NRUN + 1 END IF IF( RESULT( 7 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) IF( PREFAC ) THEN WRITE( NOUT, FMT = 9995 )'CGBSVX', $ FACT, TRANS, N, KL, KU, EQUED, $ IMAT, 7, RESULT( 7 ) ELSE WRITE( NOUT, FMT = 9996 )'CGBSVX', $ FACT, TRANS, N, KL, KU, IMAT, 7, $ RESULT( 7 ) END IF NFAIL = NFAIL + 1 NRUN = NRUN + 1 END IF END IF 90 CONTINUE 100 CONTINUE 110 CONTINUE 120 CONTINUE 130 CONTINUE 140 CONTINUE 150 CONTINUE * * Print a summary of the results. * CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' *** In CDRVGB, LA=', I5, ' is too small for N=', I5, $ ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ', $ I5 ) 9998 FORMAT( ' *** In CDRVGB, LAFB=', I5, ' is too small for N=', I5, $ ', KU=', I5, ', KL=', I5, / $ ' ==> Increase LAFB to at least ', I5 ) 9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ', $ I1, ', test(', I1, ')=', G12.5 ) 9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',', $ I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 ) 9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',', $ I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1, $ ')=', G12.5 ) * RETURN * * End of CDRVGB * END