numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/cdrvrfp.f 19685B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
*> \brief \b CDRVRFP
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
*      +              THRESH, A, ASAV, AFAC, AINV, B,
*      +              BSAV, XACT, X, ARF, ARFINV,
*      +              C_WORK_CLATMS, C_WORK_CPOT02,
*      +              C_WORK_CPOT03, S_WORK_CLATMS, S_WORK_CLANHE,
*      +              S_WORK_CPOT01, S_WORK_CPOT02, S_WORK_CPOT03 )
*
*       .. Scalar Arguments ..
*       INTEGER            NN, NNS, NNT, NOUT
*       REAL               THRESH
*       ..
*       .. Array Arguments ..
*       INTEGER            NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
*       COMPLEX            A( * )
*       COMPLEX            AINV( * )
*       COMPLEX            ASAV( * )
*       COMPLEX            B( * )
*       COMPLEX            BSAV( * )
*       COMPLEX            AFAC( * )
*       COMPLEX            ARF( * )
*       COMPLEX            ARFINV( * )
*       COMPLEX            XACT( * )
*       COMPLEX            X( * )
*       COMPLEX            C_WORK_CLATMS( * )
*       COMPLEX            C_WORK_CPOT02( * )
*       COMPLEX            C_WORK_CPOT03( * )
*       REAL               S_WORK_CLATMS( * )
*       REAL               S_WORK_CLANHE( * )
*       REAL               S_WORK_CPOT01( * )
*       REAL               S_WORK_CPOT02( * )
*       REAL               S_WORK_CPOT03( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CDRVRFP tests the LAPACK RFP routines:
*>     CPFTRF, CPFTRS, and CPFTRI.
*>
*> This testing routine follow the same tests as CDRVPO (test for the full
*> format Symmetric Positive Definite solver).
*>
*> The tests are performed in Full Format, conversion back and forth from
*> full format to RFP format are performed using the routines CTRTTF and
*> CTFTTR.
*>
*> First, a specific matrix A of size N is created. There is nine types of
*> different matrixes possible.
*>  1. Diagonal                        6. Random, CNDNUM = sqrt(0.1/EPS)
*>  2. Random, CNDNUM = 2              7. Random, CNDNUM = 0.1/EPS
*> *3. First row and column zero       8. Scaled near underflow
*> *4. Last row and column zero        9. Scaled near overflow
*> *5. Middle row and column zero
*> (* - tests error exits from CPFTRF, no test ratios are computed)
*> A solution XACT of size N-by-NRHS is created and the associated right
*> hand side B as well. Then CPFTRF is called to compute L (or U), the
*> Cholesky factor of A. Then L (or U) is used to solve the linear system
*> of equations AX = B. This gives X. Then L (or U) is used to compute the
*> inverse of A, AINV. The following four tests are then performed:
*> (1) norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*>     norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> (2) norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
*> (3) norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> (4) ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
*> where EPS is the machine precision, RCOND the condition number of A, and
*> norm( . ) the 1-norm for (1,2,3) and the inf-norm for (4).
*> Errors occur when INFO parameter is not as expected. Failures occur when
*> a test ratios is greater than THRES.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NOUT
*> \verbatim
*>          NOUT is INTEGER
*>                The unit number for output.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER
*>                The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*>          NVAL is INTEGER array, dimension (NN)
*>                The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*>          NNS is INTEGER
*>                The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*>          NSVAL is INTEGER array, dimension (NNS)
*>                The values of the number of right-hand sides NRHS.
*> \endverbatim
*>
*> \param[in] NNT
*> \verbatim
*>          NNT is INTEGER
*>                The number of values of MATRIX TYPE contained in the vector NTVAL.
*> \endverbatim
*>
*> \param[in] NTVAL
*> \verbatim
*>          NTVAL is INTEGER array, dimension (NNT)
*>                The values of matrix type (between 0 and 9 for PO/PP/PF matrices).
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is REAL
*>                The threshold value for the test ratios.  A result is
*>                included in the output file if RESULT >= THRESH.  To have
*>                every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] ASAV
*> \verbatim
*>          ASAV is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*>          AFAC is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AINV
*> \verbatim
*>          AINV is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is COMPLEX array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] BSAV
*> \verbatim
*>          BSAV is COMPLEX array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*>          XACT is COMPLEX array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] ARF
*> \verbatim
*>          ARF is COMPLEX array, dimension ((NMAX*(NMAX+1))/2)
*> \endverbatim
*>
*> \param[out] ARFINV
*> \verbatim
*>          ARFINV is COMPLEX array, dimension ((NMAX*(NMAX+1))/2)
*> \endverbatim
*>
*> \param[out] C_WORK_CLATMS
*> \verbatim
*>          C_WORK_CLATMS is COMPLEX array, dimension ( 3*NMAX )
*> \endverbatim
*>
*> \param[out] C_WORK_CPOT02
*> \verbatim
*>          C_WORK_CPOT02 is COMPLEX array, dimension ( NMAX*MAXRHS )
*> \endverbatim
*>
*> \param[out] C_WORK_CPOT03
*> \verbatim
*>          C_WORK_CPOT03 is COMPLEX array, dimension ( NMAX*NMAX )
*> \endverbatim
*>
*> \param[out] S_WORK_CLATMS
*> \verbatim
*>          S_WORK_CLATMS is REAL array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] S_WORK_CLANHE
*> \verbatim
*>          S_WORK_CLANHE is REAL array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] S_WORK_CPOT01
*> \verbatim
*>          S_WORK_CPOT01 is REAL array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] S_WORK_CPOT02
*> \verbatim
*>          S_WORK_CPOT02 is REAL array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] S_WORK_CPOT03
*> \verbatim
*>          S_WORK_CPOT03 is REAL array, dimension ( NMAX )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
     +              THRESH, A, ASAV, AFAC, AINV, B,
     +              BSAV, XACT, X, ARF, ARFINV,
     +              C_WORK_CLATMS, C_WORK_CPOT02,
     +              C_WORK_CPOT03, S_WORK_CLATMS, S_WORK_CLANHE,
     +              S_WORK_CPOT01, S_WORK_CPOT02, S_WORK_CPOT03 )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            NN, NNS, NNT, NOUT
      REAL               THRESH
*     ..
*     .. Array Arguments ..
      INTEGER            NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
      COMPLEX            A( * )
      COMPLEX            AINV( * )
      COMPLEX            ASAV( * )
      COMPLEX            B( * )
      COMPLEX            BSAV( * )
      COMPLEX            AFAC( * )
      COMPLEX            ARF( * )
      COMPLEX            ARFINV( * )
      COMPLEX            XACT( * )
      COMPLEX            X( * )
      COMPLEX            C_WORK_CLATMS( * )
      COMPLEX            C_WORK_CPOT02( * )
      COMPLEX            C_WORK_CPOT03( * )
      REAL               S_WORK_CLATMS( * )
      REAL               S_WORK_CLANHE( * )
      REAL               S_WORK_CPOT01( * )
      REAL               S_WORK_CPOT02( * )
      REAL               S_WORK_CPOT03( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
      INTEGER            NTESTS
      PARAMETER          ( NTESTS = 4 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ZEROT
      INTEGER            I, INFO, IUPLO, LDA, LDB, IMAT, NERRS, NFAIL,
     +                   NRHS, NRUN, IZERO, IOFF, K, NT, N, IFORM, IIN,
     +                   IIT, IIS
      CHARACTER          DIST, CTYPE, UPLO, CFORM
      INTEGER            KL, KU, MODE
      REAL               ANORM, AINVNM, CNDNUM, RCONDC
*     ..
*     .. Local Arrays ..
      CHARACTER          UPLOS( 2 ), FORMS( 2 )
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
      REAL               RESULT( NTESTS )
*     ..
*     .. External Functions ..
      REAL               CLANHE
      EXTERNAL           CLANHE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ALADHD, ALAERH, ALASVM, CGET04, CTFTTR, CLACPY,
     +                   CLAIPD, CLARHS, CLATB4, CLATMS, CPFTRI, CPFTRF,
     +                   CPFTRS, CPOT01, CPOT02, CPOT03, CPOTRI, CPOTRF,
     +                   CTRTTF
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
      DATA               UPLOS / 'U', 'L' /
      DATA               FORMS / 'N', 'C' /
*     ..
*     .. Executable Statements ..
*
*     Initialize constants and the random number seed.
*
      NRUN = 0
      NFAIL = 0
      NERRS = 0
      DO 10 I = 1, 4
         ISEED( I ) = ISEEDY( I )
   10 CONTINUE
*
      DO 130 IIN = 1, NN
*
         N = NVAL( IIN )
         LDA = MAX( N, 1 )
         LDB = MAX( N, 1 )
*
         DO 980 IIS = 1, NNS
*
            NRHS = NSVAL( IIS )
*
            DO 120 IIT = 1, NNT
*
               IMAT = NTVAL( IIT )
*
*              If N.EQ.0, only consider the first type
*
               IF( N.EQ.0 .AND. IIT.GE.1 ) GO TO 120
*
*              Skip types 3, 4, or 5 if the matrix size is too small.
*
               IF( IMAT.EQ.4 .AND. N.LE.1 ) GO TO 120
               IF( IMAT.EQ.5 .AND. N.LE.2 ) GO TO 120
*
*              Do first for UPLO = 'U', then for UPLO = 'L'
*
               DO 110 IUPLO = 1, 2
                  UPLO = UPLOS( IUPLO )
*
*                 Do first for CFORM = 'N', then for CFORM = 'C'
*
                  DO 100 IFORM = 1, 2
                     CFORM = FORMS( IFORM )
*
*                    Set up parameters with CLATB4 and generate a test
*                    matrix with CLATMS.
*
                     CALL CLATB4( 'CPO', IMAT, N, N, CTYPE, KL, KU,
     +                            ANORM, MODE, CNDNUM, DIST )
*
                     SRNAMT = 'CLATMS'
                     CALL CLATMS( N, N, DIST, ISEED, CTYPE,
     +                            S_WORK_CLATMS,
     +                            MODE, CNDNUM, ANORM, KL, KU, UPLO, A,
     +                            LDA, C_WORK_CLATMS, INFO )
*
*                    Check error code from CLATMS.
*
                     IF( INFO.NE.0 ) THEN
                        CALL ALAERH( 'CPF', 'CLATMS', INFO, 0, UPLO, N,
     +                               N, -1, -1, -1, IIT, NFAIL, NERRS,
     +                               NOUT )
                        GO TO 100
                     END IF
*
*                    For types 3-5, zero one row and column of the matrix to
*                    test that INFO is returned correctly.
*
                     ZEROT = IMAT.GE.3 .AND. IMAT.LE.5
                     IF( ZEROT ) THEN
                        IF( IIT.EQ.3 ) THEN
                           IZERO = 1
                        ELSE IF( IIT.EQ.4 ) THEN
                           IZERO = N
                        ELSE
                           IZERO = N / 2 + 1
                        END IF
                        IOFF = ( IZERO-1 )*LDA
*
*                       Set row and column IZERO of A to 0.
*
                        IF( IUPLO.EQ.1 ) THEN
                           DO 20 I = 1, IZERO - 1
                              A( IOFF+I ) = ZERO
   20                      CONTINUE
                           IOFF = IOFF + IZERO
                           DO 30 I = IZERO, N
                              A( IOFF ) = ZERO
                              IOFF = IOFF + LDA
   30                      CONTINUE
                        ELSE
                           IOFF = IZERO
                           DO 40 I = 1, IZERO - 1
                              A( IOFF ) = ZERO
                              IOFF = IOFF + LDA
   40                      CONTINUE
                           IOFF = IOFF - IZERO
                           DO 50 I = IZERO, N
                              A( IOFF+I ) = ZERO
   50                      CONTINUE
                        END IF
                     ELSE
                        IZERO = 0
                     END IF
*
*                    Set the imaginary part of the diagonals.
*
                     CALL CLAIPD( N, A, LDA+1, 0 )
*
*                    Save a copy of the matrix A in ASAV.
*
                     CALL CLACPY( UPLO, N, N, A, LDA, ASAV, LDA )
*
*                    Compute the condition number of A (RCONDC).
*
                     IF( ZEROT ) THEN
                        RCONDC = ZERO
                     ELSE
*
*                       Compute the 1-norm of A.
*
                        ANORM = CLANHE( '1', UPLO, N, A, LDA,
     +                         S_WORK_CLANHE )
*
*                       Factor the matrix A.
*
                        CALL CPOTRF( UPLO, N, A, LDA, INFO )
*
*                       Form the inverse of A.
*
                        CALL CPOTRI( UPLO, N, A, LDA, INFO )

                        IF ( N .NE. 0 ) THEN
*
*                          Compute the 1-norm condition number of A.
*
                           AINVNM = CLANHE( '1', UPLO, N, A, LDA,
     +                           S_WORK_CLANHE )
                           RCONDC = ( ONE / ANORM ) / AINVNM
*
*                          Restore the matrix A.
*
                           CALL CLACPY( UPLO, N, N, ASAV, LDA, A, LDA )
                        END IF
*
                     END IF
*
*                    Form an exact solution and set the right hand side.
*
                     SRNAMT = 'CLARHS'
                     CALL CLARHS( 'CPO', 'N', UPLO, ' ', N, N, KL, KU,
     +                            NRHS, A, LDA, XACT, LDA, B, LDA,
     +                            ISEED, INFO )
                     CALL CLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
*
*                    Compute the L*L' or U'*U factorization of the
*                    matrix and solve the system.
*
                     CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
                     CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDB )
*
                     SRNAMT = 'CTRTTF'
                     CALL CTRTTF( CFORM, UPLO, N, AFAC, LDA, ARF, INFO )
                     SRNAMT = 'CPFTRF'
                     CALL CPFTRF( CFORM, UPLO, N, ARF, INFO )
*
*                    Check error code from CPFTRF.
*
                     IF( INFO.NE.IZERO ) THEN
*
*                       LANGOU: there is a small hick here: IZERO should
*                       always be INFO however if INFO is ZERO, ALAERH does not
*                       complain.
*
                         CALL ALAERH( 'CPF', 'CPFSV ', INFO, IZERO,
     +                                UPLO, N, N, -1, -1, NRHS, IIT,
     +                                NFAIL, NERRS, NOUT )
                         GO TO 100
                      END IF
*
*                     Skip the tests if INFO is not 0.
*
                     IF( INFO.NE.0 ) THEN
                        GO TO 100
                     END IF
*
                     SRNAMT = 'CPFTRS'
                     CALL CPFTRS( CFORM, UPLO, N, NRHS, ARF, X, LDB,
     +                            INFO )
*
                     SRNAMT = 'CTFTTR'
                     CALL CTFTTR( CFORM, UPLO, N, ARF, AFAC, LDA, INFO )
*
*                    Reconstruct matrix from factors and compute
*                    residual.
*
                     CALL CLACPY( UPLO, N, N, AFAC, LDA, ASAV, LDA )
                     CALL CPOT01( UPLO, N, A, LDA, AFAC, LDA,
     +                             S_WORK_CPOT01, RESULT( 1 ) )
                     CALL CLACPY( UPLO, N, N, ASAV, LDA, AFAC, LDA )
*
*                    Form the inverse and compute the residual.
*
                    IF(MOD(N,2).EQ.0)THEN
                       CALL CLACPY( 'A', N+1, N/2, ARF, N+1, ARFINV,
     +                               N+1 )
                    ELSE
                       CALL CLACPY( 'A', N, (N+1)/2, ARF, N, ARFINV,
     +                               N )
                    END IF
*
                     SRNAMT = 'CPFTRI'
                     CALL CPFTRI( CFORM, UPLO, N, ARFINV , INFO )
*
                     SRNAMT = 'CTFTTR'
                     CALL CTFTTR( CFORM, UPLO, N, ARFINV, AINV, LDA,
     +                            INFO )
*
*                    Check error code from CPFTRI.
*
                     IF( INFO.NE.0 )
     +                  CALL ALAERH( 'CPO', 'CPFTRI', INFO, 0, UPLO, N,
     +                               N, -1, -1, -1, IMAT, NFAIL, NERRS,
     +                               NOUT )
*
                     CALL CPOT03( UPLO, N, A, LDA, AINV, LDA,
     +                            C_WORK_CPOT03, LDA, S_WORK_CPOT03,
     +                            RCONDC, RESULT( 2 ) )
*
*                    Compute residual of the computed solution.
*
                     CALL CLACPY( 'Full', N, NRHS, B, LDA,
     +                            C_WORK_CPOT02, LDA )
                     CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA,
     +                            C_WORK_CPOT02, LDA, S_WORK_CPOT02,
     +                            RESULT( 3 ) )
*
*                    Check solution from generated exact solution.
*
                     CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
     +                         RESULT( 4 ) )
                     NT = 4
*
*                    Print information about the tests that did not
*                    pass the threshold.
*
                     DO 60 K = 1, NT
                        IF( RESULT( K ).GE.THRESH ) THEN
                           IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     +                        CALL ALADHD( NOUT, 'CPF' )
                           WRITE( NOUT, FMT = 9999 )'CPFSV ', UPLO,
     +                            N, IIT, K, RESULT( K )
                           NFAIL = NFAIL + 1
                        END IF
   60                CONTINUE
                     NRUN = NRUN + NT
  100             CONTINUE
  110          CONTINUE
  120       CONTINUE
  980    CONTINUE
  130 CONTINUE
*
*     Print a summary of the results.
*
      CALL ALASVM( 'CPF', NOUT, NFAIL, NRUN, NERRS )
*
 9999 FORMAT( 1X, A6, ', UPLO=''', A1, ''', N =', I5, ', type ', I1,
     +      ', test(', I1, ')=', G12.5 )
*
      RETURN
*
*     End of CDRVRFP
*
      END