numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/cgbt02.f | 7448B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
*> \brief \b CGBT02 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, * LDB, RWORK, RESID ) * * .. Scalar Arguments .. * CHARACTER TRANS * INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS * REAL RESID * .. * .. Array Arguments .. * REAL RWORK( * ) * COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGBT02 computes the residual for a solution of a banded system of *> equations op(A)*X = B: *> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ), *> where op(A) = A, A**T, or A**H, depending on TRANS, and EPS is the *> machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies the form of the system of equations: *> = 'N': A * X = B (No transpose) *> = 'T': A**T * X = B (Transpose) *> = 'C': A**H * X = B (Conjugate transpose) *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> The number of subdiagonals within the band of A. KL >= 0. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> The number of superdiagonals within the band of A. KU >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of B. NRHS >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The original matrix A in band storage, stored in rows 1 to *> KL+KU+1. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,KL+KU+1). *> \endverbatim *> *> \param[in] X *> \verbatim *> X is COMPLEX array, dimension (LDX,NRHS) *> The computed solution vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. If TRANS = 'N', *> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> On entry, the right hand side vectors for the system of *> linear equations. *> On exit, B is overwritten with the difference B - A*X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. IF TRANS = 'N', *> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (MAX(1,LRWORK)), *> where LRWORK >= M when TRANS = 'T' or 'C'; otherwise, RWORK *> is not referenced. *> \endverbatim * *> \param[out] RESID *> \verbatim *> RESID is REAL *> The maximum over the number of right hand sides of *> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, $ LDB, RWORK, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANS INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS REAL RESID * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CONE PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I1, I2, J, KD, N1 REAL ANORM, BNORM, EPS, TEMP, XNORM COMPLEX CDUM * .. * .. External Functions .. LOGICAL LSAME, SISNAN REAL SCASUM, SLAMCH EXTERNAL LSAME, SCASUM, SISNAN, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGBMV * .. * .. Statement Functions .. REAL CABS1 * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, MIN, REAL * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) ) * .. * .. Executable Statements .. * * Quick return if N = 0 pr NRHS = 0 * IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = ZERO IF( LSAME( TRANS, 'N' ) ) THEN * * Find norm1(A). * KD = KU + 1 DO 10 J = 1, N I1 = MAX( KD+1-J, 1 ) I2 = MIN( KD+M-J, KL+KD ) IF( I2.GE.I1 ) THEN TEMP = SCASUM( I2-I1+1, A( I1, J ), 1 ) IF( ANORM.LT.TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP END IF 10 CONTINUE ELSE * * Find normI(A). * DO 12 I1 = 1, M RWORK( I1 ) = ZERO 12 CONTINUE DO 16 J = 1, N KD = KU + 1 - J DO 14 I1 = MAX( 1, J-KU ), MIN( M, J+KL ) RWORK( I1 ) = RWORK( I1 ) + CABS1( A( KD+I1, J ) ) 14 CONTINUE 16 CONTINUE DO 18 I1 = 1, M TEMP = RWORK( I1 ) IF( ANORM.LT.TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP 18 CONTINUE END IF IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN N1 = N ELSE N1 = M END IF * * Compute B - op(A)*X * DO 20 J = 1, NRHS CALL CGBMV( TRANS, M, N, KL, KU, -CONE, A, LDA, X( 1, J ), 1, $ CONE, B( 1, J ), 1 ) 20 CONTINUE * * Compute the maximum over the number of right hand sides of * norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ). * RESID = ZERO DO 30 J = 1, NRHS BNORM = SCASUM( N1, B( 1, J ), 1 ) XNORM = SCASUM( N1, X( 1, J ), 1 ) IF( XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS ) END IF 30 CONTINUE * RETURN * * End of CGBT02 * END