numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/chet01_aa.f | 7522B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
*> \brief \b CHET01_AA * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CHET01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, * C, LDC, RWORK, RESID ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER LDA, LDAFAC, LDC, N * REAL RESID * .. * .. Array Arguments .. * INTEGER IPIV( * ) * REAL RWORK( * ) * COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CHET01_AA reconstructs a hermitian indefinite matrix A from its *> block L*D*L' or U*D*U' factorization and computes the residual *> norm( C - A ) / ( N * norm(A) * EPS ), *> where C is the reconstructed matrix and EPS is the machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> hermitian matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The original hermitian matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N) *> \endverbatim *> *> \param[in] AFAC *> \verbatim *> AFAC is COMPLEX array, dimension (LDAFAC,N) *> The factored form of the matrix A. AFAC contains the block *> diagonal matrix D and the multipliers used to obtain the *> factor L or U from the block L*D*L' or U*D*U' factorization *> as computed by CHETRF. *> \endverbatim *> *> \param[in] LDAFAC *> \verbatim *> LDAFAC is INTEGER *> The leading dimension of the array AFAC. LDAFAC >= max(1,N). *> \endverbatim *> *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> The pivot indices from CHETRF. *> \endverbatim *> *> \param[out] C *> \verbatim *> C is COMPLEX array, dimension (LDC,N) *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,N). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is COMPLEX array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is COMPLEX *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CHET01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, $ LDC, RWORK, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDAFAC, LDC, N REAL RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL RWORK( * ) COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J REAL ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, CLANHE EXTERNAL LSAME, SLAMCH, CLANHE * .. * .. External Subroutines .. EXTERNAL CLASET, CLAVHE * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Determine EPS and the norm of A. * EPS = SLAMCH( 'Epsilon' ) ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK ) * * Initialize C to the tridiagonal matrix T. * CALL CLASET( 'Full', N, N, CZERO, CZERO, C, LDC ) CALL CLACPY( 'F', 1, N, AFAC( 1, 1 ), LDAFAC+1, C( 1, 1 ), LDC+1 ) IF( N.GT.1 ) THEN IF( LSAME( UPLO, 'U' ) ) THEN CALL CLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 1, 2 ), $ LDC+1 ) CALL CLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 2, 1 ), $ LDC+1 ) CALL CLACGV( N-1, C( 2, 1 ), LDC+1 ) ELSE CALL CLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 1, 2 ), $ LDC+1 ) CALL CLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 2, 1 ), $ LDC+1 ) CALL CLACGV( N-1, C( 1, 2 ), LDC+1 ) ENDIF * * Call CTRMM to form the product U' * D (or L * D ). * IF( LSAME( UPLO, 'U' ) ) THEN CALL CTRMM( 'Left', UPLO, 'Conjugate transpose', 'Unit', $ N-1, N, CONE, AFAC( 1, 2 ), LDAFAC, C( 2, 1 ), $ LDC ) ELSE CALL CTRMM( 'Left', UPLO, 'No transpose', 'Unit', N-1, N, $ CONE, AFAC( 2, 1 ), LDAFAC, C( 2, 1 ), LDC ) END IF * * Call CTRMM again to multiply by U (or L ). * IF( LSAME( UPLO, 'U' ) ) THEN CALL CTRMM( 'Right', UPLO, 'No transpose', 'Unit', N, N-1, $ CONE, AFAC( 1, 2 ), LDAFAC, C( 1, 2 ), LDC ) ELSE CALL CTRMM( 'Right', UPLO, 'Conjugate transpose', 'Unit', N, $ N-1, CONE, AFAC( 2, 1 ), LDAFAC, C( 1, 2 ), $ LDC ) END IF ENDIF * * Apply hermitian pivots * DO J = N, 1, -1 I = IPIV( J ) IF( I.NE.J ) $ CALL CSWAP( N, C( J, 1 ), LDC, C( I, 1 ), LDC ) END DO DO J = N, 1, -1 I = IPIV( J ) IF( I.NE.J ) $ CALL CSWAP( N, C( 1, J ), 1, C( 1, I ), 1 ) END DO * * * Compute the difference C - A . * IF( LSAME( UPLO, 'U' ) ) THEN DO J = 1, N DO I = 1, J C( I, J ) = C( I, J ) - A( I, J ) END DO END DO ELSE DO J = 1, N DO I = J, N C( I, J ) = C( I, J ) - A( I, J ) END DO END DO END IF * * Compute norm( C - A ) / ( N * norm(A) * EPS ) * RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS END IF * RETURN * * End of CHET01_AA * END