numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/chpt01.f 6506B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
*> \brief \b CHPT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDC, N
*       REAL               RESID
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       REAL               RWORK( * )
*       COMPLEX            A( * ), AFAC( * ), C( LDC, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHPT01 reconstructs a Hermitian indefinite packed matrix A from its
*> block L*D*L' or U*D*U' factorization and computes the residual
*>    norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix, EPS is the machine epsilon,
*> L' is the conjugate transpose of L, and U' is the conjugate transpose
*> of U.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (N*(N+1)/2)
*>          The original Hermitian matrix A, stored as a packed
*>          triangular matrix.
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is COMPLEX array, dimension (N*(N+1)/2)
*>          The factored form of the matrix A, stored as a packed
*>          triangular matrix.  AFAC contains the block diagonal matrix D
*>          and the multipliers used to obtain the factor L or U from the
*>          block L*D*L' or U*D*U' factorization as computed by CHPTRF.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices from CHPTRF.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is COMPLEX array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C.  LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDC, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               RWORK( * )
      COMPLEX            A( * ), AFAC( * ), C( LDC, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J, JC
      REAL               ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANHE, CLANHP, SLAMCH
      EXTERNAL           LSAME, CLANHE, CLANHP, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAVHP, CLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          AIMAG, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHP( '1', UPLO, N, A, RWORK )
*
*     Check the imaginary parts of the diagonal elements and return with
*     an error code if any are nonzero.
*
      JC = 1
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 10 J = 1, N
            IF( AIMAG( AFAC( JC ) ).NE.ZERO ) THEN
               RESID = ONE / EPS
               RETURN
            END IF
            JC = JC + J + 1
   10    CONTINUE
      ELSE
         DO 20 J = 1, N
            IF( AIMAG( AFAC( JC ) ).NE.ZERO ) THEN
               RESID = ONE / EPS
               RETURN
            END IF
            JC = JC + N - J + 1
   20    CONTINUE
      END IF
*
*     Initialize C to the identity matrix.
*
      CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
*     Call CLAVHP to form the product D * U' (or D * L' ).
*
      CALL CLAVHP( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Call CLAVHP again to multiply by U ( or L ).
*
      CALL CLAVHP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         JC = 0
         DO 40 J = 1, N
            DO 30 I = 1, J - 1
               C( I, J ) = C( I, J ) - A( JC+I )
   30       CONTINUE
            C( J, J ) = C( J, J ) - REAL( A( JC+J ) )
            JC = JC + J
   40    CONTINUE
      ELSE
         JC = 1
         DO 60 J = 1, N
            C( J, J ) = C( J, J ) - REAL( A( JC ) )
            DO 50 I = J + 1, N
               C( I, J ) = C( I, J ) - A( JC+I-J )
   50       CONTINUE
            JC = JC + N - J + 1
   60    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of CHPT01
*
      END