numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/cqlt02.f 6916B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
*> \brief \b CQLT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CQLT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
*                          RWORK, RESULT )
*
*       .. Scalar Arguments ..
*       INTEGER            K, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               RESULT( * ), RWORK( * )
*       COMPLEX            A( LDA, * ), AF( LDA, * ), L( LDA, * ),
*      $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CQLT02 tests CUNGQL, which generates an m-by-n matrix Q with
*> orthonormal columns that is defined as the product of k elementary
*> reflectors.
*>
*> Given the QL factorization of an m-by-n matrix A, CQLT02 generates
*> the orthogonal matrix Q defined by the factorization of the last k
*> columns of A; it compares L(m-n+1:m,n-k+1:n) with
*> Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are
*> orthonormal.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix Q to be generated.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix Q to be generated.
*>          M >= N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines the
*>          matrix Q. N >= K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The m-by-n matrix A which was factorized by CQLT01.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*>          AF is COMPLEX array, dimension (LDA,N)
*>          Details of the QL factorization of A, as returned by CGEQLF.
*>          See CGEQLF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is COMPLEX array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] L
*> \verbatim
*>          L is COMPLEX array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays A, AF, Q and L. LDA >= M.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX array, dimension (N)
*>          The scalar factors of the elementary reflectors corresponding
*>          to the QL factorization in AF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL array, dimension (2)
*>          The test ratios:
*>          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
*>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CQLT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               RESULT( * ), RWORK( * )
      COMPLEX            A( LDA, * ), AF( LDA, * ), L( LDA, * ),
     $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            ROGUE
      PARAMETER          ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      REAL               ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      REAL               CLANGE, CLANSY, SLAMCH
      EXTERNAL           CLANGE, CLANSY, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CHERK, CLACPY, CLASET, CUNGQL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
         RESULT( 1 ) = ZERO
         RESULT( 2 ) = ZERO
         RETURN
      END IF
*
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the last k columns of the factorization to the array Q
*
      CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
      IF( K.LT.M )
     $   CALL CLACPY( 'Full', M-K, K, AF( 1, N-K+1 ), LDA,
     $                Q( 1, N-K+1 ), LDA )
      IF( K.GT.1 )
     $   CALL CLACPY( 'Upper', K-1, K-1, AF( M-K+1, N-K+2 ), LDA,
     $                Q( M-K+1, N-K+2 ), LDA )
*
*     Generate the last n columns of the matrix Q
*
      SRNAMT = 'CUNGQL'
      CALL CUNGQL( M, N, K, Q, LDA, TAU( N-K+1 ), WORK, LWORK, INFO )
*
*     Copy L(m-n+1:m,n-k+1:n)
*
      CALL CLASET( 'Full', N, K, CMPLX( ZERO ), CMPLX( ZERO ),
     $             L( M-N+1, N-K+1 ), LDA )
      CALL CLACPY( 'Lower', K, K, AF( M-K+1, N-K+1 ), LDA,
     $             L( M-K+1, N-K+1 ), LDA )
*
*     Compute L(m-n+1:m,n-k+1:n) - Q(1:m,m-n+1:m)' * A(1:m,n-k+1:n)
*
      CALL CGEMM( 'Conjugate transpose', 'No transpose', N, K, M,
     $            CMPLX( -ONE ), Q, LDA, A( 1, N-K+1 ), LDA,
     $            CMPLX( ONE ), L( M-N+1, N-K+1 ), LDA )
*
*     Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
*
      ANORM = CLANGE( '1', M, K, A( 1, N-K+1 ), LDA, RWORK )
      RESID = CLANGE( '1', N, K, L( M-N+1, N-K+1 ), LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q'*Q
*
      CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), L, LDA )
      CALL CHERK( 'Upper', 'Conjugate transpose', N, M, -ONE, Q, LDA,
     $            ONE, L, LDA )
*
*     Compute norm( I - Q'*Q ) / ( M * EPS ) .
*
      RESID = CLANSY( '1', 'Upper', N, L, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS
*
      RETURN
*
*     End of CQLT02
*
      END