numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/cqlt02.f | 6916B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
*> \brief \b CQLT02 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CQLT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK, * RWORK, RESULT ) * * .. Scalar Arguments .. * INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. * REAL RESULT( * ), RWORK( * ) * COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ), * $ Q( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CQLT02 tests CUNGQL, which generates an m-by-n matrix Q with *> orthonormal columns that is defined as the product of k elementary *> reflectors. *> *> Given the QL factorization of an m-by-n matrix A, CQLT02 generates *> the orthogonal matrix Q defined by the factorization of the last k *> columns of A; it compares L(m-n+1:m,n-k+1:n) with *> Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are *> orthonormal. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix Q to be generated. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix Q to be generated. *> M >= N >= 0. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of elementary reflectors whose product defines the *> matrix Q. N >= K >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The m-by-n matrix A which was factorized by CQLT01. *> \endverbatim *> *> \param[in] AF *> \verbatim *> AF is COMPLEX array, dimension (LDA,N) *> Details of the QL factorization of A, as returned by CGEQLF. *> See CGEQLF for further details. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is COMPLEX array, dimension (LDA,N) *> \endverbatim *> *> \param[out] L *> \verbatim *> L is COMPLEX array, dimension (LDA,N) *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the arrays A, AF, Q and L. LDA >= M. *> \endverbatim *> *> \param[in] TAU *> \verbatim *> TAU is COMPLEX array, dimension (N) *> The scalar factors of the elementary reflectors corresponding *> to the QL factorization in AF. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (M) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (2) *> The test ratios: *> RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) *> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CQLT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK, $ RWORK, RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL RESULT( * ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ), $ Q( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, EPS, RESID * .. * .. External Functions .. REAL CLANGE, CLANSY, SLAMCH EXTERNAL CLANGE, CLANSY, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM, CHERK, CLACPY, CLASET, CUNGQL * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, REAL * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO RETURN END IF * EPS = SLAMCH( 'Epsilon' ) * * Copy the last k columns of the factorization to the array Q * CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA ) IF( K.LT.M ) $ CALL CLACPY( 'Full', M-K, K, AF( 1, N-K+1 ), LDA, $ Q( 1, N-K+1 ), LDA ) IF( K.GT.1 ) $ CALL CLACPY( 'Upper', K-1, K-1, AF( M-K+1, N-K+2 ), LDA, $ Q( M-K+1, N-K+2 ), LDA ) * * Generate the last n columns of the matrix Q * SRNAMT = 'CUNGQL' CALL CUNGQL( M, N, K, Q, LDA, TAU( N-K+1 ), WORK, LWORK, INFO ) * * Copy L(m-n+1:m,n-k+1:n) * CALL CLASET( 'Full', N, K, CMPLX( ZERO ), CMPLX( ZERO ), $ L( M-N+1, N-K+1 ), LDA ) CALL CLACPY( 'Lower', K, K, AF( M-K+1, N-K+1 ), LDA, $ L( M-K+1, N-K+1 ), LDA ) * * Compute L(m-n+1:m,n-k+1:n) - Q(1:m,m-n+1:m)' * A(1:m,n-k+1:n) * CALL CGEMM( 'Conjugate transpose', 'No transpose', N, K, M, $ CMPLX( -ONE ), Q, LDA, A( 1, N-K+1 ), LDA, $ CMPLX( ONE ), L( M-N+1, N-K+1 ), LDA ) * * Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . * ANORM = CLANGE( '1', M, K, A( 1, N-K+1 ), LDA, RWORK ) RESID = CLANGE( '1', N, K, L( M-N+1, N-K+1 ), LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS ELSE RESULT( 1 ) = ZERO END IF * * Compute I - Q'*Q * CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), L, LDA ) CALL CHERK( 'Upper', 'Conjugate transpose', N, M, -ONE, Q, LDA, $ ONE, L, LDA ) * * Compute norm( I - Q'*Q ) / ( M * EPS ) . * RESID = CLANSY( '1', 'Upper', N, L, LDA, RWORK ) * RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS * RETURN * * End of CQLT02 * END