numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/csyt03.f | 6141B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
*> \brief \b CSYT03 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CSYT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, * RWORK, RCOND, RESID ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER LDA, LDAINV, LDWORK, N * REAL RCOND, RESID * .. * .. Array Arguments .. * REAL RWORK( * ) * COMPLEX A( LDA, * ), AINV( LDAINV, * ), * $ WORK( LDWORK, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CSYT03 computes the residual for a complex symmetric matrix times *> its inverse: *> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ) *> where EPS is the machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> complex symmetric matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The original complex symmetric matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N) *> \endverbatim *> *> \param[in,out] AINV *> \verbatim *> AINV is COMPLEX array, dimension (LDAINV,N) *> On entry, the inverse of the matrix A, stored as a symmetric *> matrix in the same format as A. *> In this version, AINV is expanded into a full matrix and *> multiplied by A, so the opposing triangle of AINV will be *> changed; i.e., if the upper triangular part of AINV is *> stored, the lower triangular part will be used as work space. *> \endverbatim *> *> \param[in] LDAINV *> \verbatim *> LDAINV is INTEGER *> The leading dimension of the array AINV. LDAINV >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (LDWORK,N) *> \endverbatim *> *> \param[in] LDWORK *> \verbatim *> LDWORK is INTEGER *> The leading dimension of the array WORK. LDWORK >= max(1,N). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (N) *> \endverbatim *> *> \param[out] RCOND *> \verbatim *> RCOND is REAL *> The reciprocal of the condition number of A, computed as *> RCOND = 1/ (norm(A) * norm(AINV)). *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is REAL *> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CSYT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, $ RWORK, RCOND, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDAINV, LDWORK, N REAL RCOND, RESID * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), AINV( LDAINV, * ), $ WORK( LDWORK, * ) * .. * * ===================================================================== * * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, J REAL AINVNM, ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME REAL CLANGE, CLANSY, SLAMCH EXTERNAL LSAME, CLANGE, CLANSY, SLAMCH * .. * .. External Subroutines .. EXTERNAL CSYMM * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * * Quick exit if N = 0 * IF( N.LE.0 ) THEN RCOND = ONE RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = CLANSY( '1', UPLO, N, A, LDA, RWORK ) AINVNM = CLANSY( '1', UPLO, N, AINV, LDAINV, RWORK ) IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCOND = ZERO RESID = ONE / EPS RETURN END IF RCOND = ( ONE/ANORM ) / AINVNM * * Expand AINV into a full matrix and call CSYMM to multiply * AINV on the left by A (store the result in WORK). * IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = 1, J - 1 AINV( J, I ) = AINV( I, J ) 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = J + 1, N AINV( J, I ) = AINV( I, J ) 30 CONTINUE 40 CONTINUE END IF CALL CSYMM( 'Left', UPLO, N, N, -CONE, A, LDA, AINV, LDAINV, $ CZERO, WORK, LDWORK ) * * Add the identity matrix to WORK . * DO 50 I = 1, N WORK( I, I ) = WORK( I, I ) + CONE 50 CONTINUE * * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) * RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK ) * RESID = ( ( RESID*RCOND )/EPS ) / REAL( N ) * RETURN * * End of CSYT03 * END