numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/cunhr_col02.f 10561B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
*> \brief \b CUNHR_COL02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CUNHR_COL02( M, N, MB1, NB1, NB2, RESULT )
*
*       .. Scalar Arguments ..
*       INTEGER           M, N, MB1, NB1, NB2
*       .. Return values ..
*       REAL              RESULT(6)
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CUNHR_COL02 tests CUNGTSQR_ROW and CUNHR_COL inside CGETSQRHRT
*> (which calls CLATSQR, CUNGTSQR_ROW and CUNHR_COL) using CGEMQRT.
*> Therefore, CLATSQR (part of CGEQR), CGEMQRT (part of CGEMQR)
*> have to be tested before this test.
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          Number of rows in test matrix.
*> \endverbatim
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          Number of columns in test matrix.
*> \endverbatim
*> \param[in] MB1
*> \verbatim
*>          MB1 is INTEGER
*>          Number of row in row block in an input test matrix.
*> \endverbatim
*>
*> \param[in] NB1
*> \verbatim
*>          NB1 is INTEGER
*>          Number of columns in column block an input test matrix.
*> \endverbatim
*>
*> \param[in] NB2
*> \verbatim
*>          NB2 is INTEGER
*>          Number of columns in column block in an output test matrix.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL array, dimension (6)
*>          Results of each of the six tests below.
*>
*>            A is a m-by-n test input matrix to be factored.
*>            so that A = Q_gr * ( R )
*>                               ( 0 ),
*>
*>            Q_qr is an implicit m-by-m unitary Q matrix, the result
*>            of factorization in blocked WY-representation,
*>            stored in CGEQRT output format.
*>
*>            R is a n-by-n upper-triangular matrix,
*>
*>            0 is a (m-n)-by-n zero matrix,
*>
*>            Q is an explicit m-by-m unitary matrix Q = Q_gr * I
*>
*>            C is an m-by-n random matrix,
*>
*>            D is an n-by-m random matrix.
*>
*>          The six tests are:
*>
*>          RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| )
*>            is equivalent to test for | A - Q * R | / (eps * m * |A|),
*>
*>          RESULT(2) = |I - (Q**H) * Q| / ( eps * m ),
*>
*>          RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|),
*>
*>          RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|)
*>
*>          RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|)
*>
*>          RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|),
*>
*>          where:
*>            Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are
*>            computed using CGEMQRT,
*>
*>            Q * C, (Q**H) * C, D * Q, D * (Q**H)  are
*>            computed using CGEMM.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CUNHR_COL02( M, N, MB1, NB1, NB2, RESULT )
      IMPLICIT NONE
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER           M, N, MB1, NB1, NB2
*     .. Return values ..
      REAL              RESULT(6)
*
*  =====================================================================
*
*     ..
*     .. Local allocatable arrays
      COMPLEX         , ALLOCATABLE ::  A(:,:), AF(:,:), Q(:,:), R(:,:),
     $                   WORK( : ), T1(:,:), T2(:,:), DIAG(:),
     $                   C(:,:), CF(:,:), D(:,:), DF(:,:)
      REAL            , ALLOCATABLE :: RWORK(:)
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
      COMPLEX            CONE, CZERO
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ),
     $                     CZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            TESTZEROS
      INTEGER            INFO, J, K, L, LWORK, NB2_UB, NRB
      REAL               ANORM, EPS, RESID, CNORM, DNORM
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 )
      COMPLEX            WORKQUERY( 1 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH, CLANGE, CLANSY
      EXTERNAL           SLAMCH, CLANGE, CLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACPY, CLARNV, CLASET, CGETSQRHRT,
     $                   CSCAL, CGEMM, CGEMQRT, CHERK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CEILING, REAL, MAX, MIN
*     ..
*     .. Scalars in Common ..
      CHARACTER(LEN=32)  SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRMNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA ISEED / 1988, 1989, 1990, 1991 /
*
*     TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
*
      TESTZEROS = .FALSE.
*
      EPS = SLAMCH( 'Epsilon' )
      K = MIN( M, N )
      L = MAX( M, N, 1)
*
*     Dynamically allocate local arrays
*
      ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
     $           C(M,N), CF(M,N),
     $           D(N,M), DF(N,M) )
*
*     Put random numbers into A and copy to AF
*
      DO J = 1, N
         CALL CLARNV( 2, ISEED, M, A( 1, J ) )
      END DO
      IF( TESTZEROS ) THEN
         IF( M.GE.4 ) THEN
            DO J = 1, N
               CALL CLARNV( 2, ISEED, M/2, A( M/4, J ) )
            END DO
         END IF
      END IF
      CALL CLACPY( 'Full', M, N, A, M, AF, M )
*
*     Number of row blocks in CLATSQR
*
      NRB = MAX( 1, CEILING( REAL( M - N ) / REAL( MB1 - N ) ) )
*
      ALLOCATE ( T1( NB1, N * NRB ) )
      ALLOCATE ( T2( NB2, N ) )
      ALLOCATE ( DIAG( N ) )
*
*     Begin determine LWORK for the array WORK and allocate memory.
*
*     CGEMQRT requires NB2 to be bounded by N.
*
      NB2_UB = MIN( NB2, N)
*
*
      CALL CGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2,
     $                 WORKQUERY, -1, INFO )
*
      LWORK = INT( WORKQUERY( 1 ) )
*
*     In CGEMQRT, WORK is N*NB2_UB if SIDE = 'L',
*                or  M*NB2_UB if SIDE = 'R'.
*
      LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M )
*
      ALLOCATE ( WORK( LWORK ) )
*
*     End allocate memory for WORK.
*
*
*     Begin Householder reconstruction routines
*
*     Factor the matrix A in the array AF.
*
      SRNAMT = 'CGETSQRHRT'
      CALL CGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2,
     $                 WORK, LWORK, INFO )
*
*     End Householder reconstruction routines.
*
*
*     Generate the m-by-m matrix Q
*
      CALL CLASET( 'Full', M, M, CZERO, CONE, Q, M )
*
      SRNAMT = 'CGEMQRT'
      CALL CGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M,
     $              WORK, INFO )
*
*     Copy R
*
      CALL CLASET( 'Full', M, N, CZERO, CZERO, R, M )
*
      CALL CLACPY( 'Upper', M, N, AF, M, R, M )
*
*     TEST 1
*     Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1)
*
      CALL CGEMM( 'C', 'N', M, N, M, -CONE, Q, M, A, M, CONE, R, M )
*
      ANORM = CLANGE( '1', M, N, A, M, RWORK )
      RESID = CLANGE( '1', M, N, R, M, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM )
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     TEST 2
*     Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2)
*
      CALL CLASET( 'Full', M, M, CZERO, CONE, R, M )
      CALL CHERK( 'U', 'C', M, M, REAL(-CONE), Q, M, REAL(CONE), R, M )
      RESID = CLANSY( '1', 'Upper', M, R, M, RWORK )
      RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) )
*
*     Generate random m-by-n matrix C
*
      DO J = 1, N
         CALL CLARNV( 2, ISEED, M, C( 1, J ) )
      END DO
      CNORM = CLANGE( '1', M, N, C, M, RWORK )
      CALL CLACPY( 'Full', M, N, C, M, CF, M )
*
*     Apply Q to C as Q*C = CF
*
      SRNAMT = 'CGEMQRT'
      CALL CGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
     $               WORK, INFO )
*
*     TEST 3
*     Compute |CF - Q*C| / ( eps *  m * |C| )
*
      CALL CGEMM( 'N', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M )
      RESID = CLANGE( '1', M, N, CF, M, RWORK )
      IF( CNORM.GT.ZERO ) THEN
         RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
      ELSE
         RESULT( 3 ) = ZERO
      END IF
*
*     Copy C into CF again
*
      CALL CLACPY( 'Full', M, N, C, M, CF, M )
*
*     Apply Q to C as (Q**T)*C = CF
*
      SRNAMT = 'CGEMQRT'
      CALL CGEMQRT( 'L', 'C', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
     $               WORK, INFO )
*
*     TEST 4
*     Compute |CF - (Q**T)*C| / ( eps * m * |C|)
*
      CALL CGEMM( 'C', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M )
      RESID = CLANGE( '1', M, N, CF, M, RWORK )
      IF( CNORM.GT.ZERO ) THEN
         RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
      ELSE
         RESULT( 4 ) = ZERO
      END IF
*
*     Generate random n-by-m matrix D and a copy DF
*
      DO J = 1, M
         CALL CLARNV( 2, ISEED, N, D( 1, J ) )
      END DO
      DNORM = CLANGE( '1', N, M, D, N, RWORK )
      CALL CLACPY( 'Full', N, M, D, N, DF, N )
*
*     Apply Q to D as D*Q = DF
*
      SRNAMT = 'CGEMQRT'
      CALL CGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
     $               WORK, INFO )
*
*     TEST 5
*     Compute |DF - D*Q| / ( eps * m * |D| )
*
      CALL CGEMM( 'N', 'N', N, M, M, -CONE, D, N, Q, M, CONE, DF, N )
      RESID = CLANGE( '1', N, M, DF, N, RWORK )
      IF( DNORM.GT.ZERO ) THEN
         RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
      ELSE
         RESULT( 5 ) = ZERO
      END IF
*
*     Copy D into DF again
*
      CALL CLACPY( 'Full', N, M, D, N, DF, N )
*
*     Apply Q to D as D*QT = DF
*
      SRNAMT = 'CGEMQRT'
      CALL CGEMQRT( 'R', 'C', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
     $               WORK, INFO )
*
*     TEST 6
*     Compute |DF - D*(Q**T)| / ( eps * m * |D| )
*
      CALL CGEMM( 'N', 'C', N, M, M, -CONE, D, N, Q, M, CONE, DF, N )
      RESID = CLANGE( '1', N, M, DF, N, RWORK )
      IF( DNORM.GT.ZERO ) THEN
         RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
      ELSE
         RESULT( 6 ) = ZERO
      END IF
*
*     Deallocate all arrays
*
      DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG,
     $             C, D, CF, DF )
*
      RETURN
*
*     End of CUNHR_COL02
*
      END