numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/dchkps.f | 10541B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
*> \brief \b DCHKPS * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DCHKPS( DOTYPE, NN, NVAL, NNB, NBVAL, NRANK, RANKVAL, * THRESH, TSTERR, NMAX, A, AFAC, PERM, PIV, WORK, * RWORK, NOUT ) * * .. Scalar Arguments .. * DOUBLE PRECISION THRESH * INTEGER NMAX, NN, NNB, NOUT, NRANK * LOGICAL TSTERR * .. * .. Array Arguments .. * DOUBLE PRECISION A( * ), AFAC( * ), PERM( * ), RWORK( * ), * $ WORK( * ) * INTEGER NBVAL( * ), NVAL( * ), PIV( * ), RANKVAL( * ) * LOGICAL DOTYPE( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DCHKPS tests DPSTRF. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB contained in the vector NBVAL. *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NNB) *> The values of the block size NB. *> \endverbatim *> *> \param[in] NRANK *> \verbatim *> NRANK is INTEGER *> The number of values of RANK contained in the vector RANKVAL. *> \endverbatim *> *> \param[in] RANKVAL *> \verbatim *> RANKVAL is INTEGER array, dimension (NBVAL) *> The values of the block size NB. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for N, used in dimensioning the *> work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AFAC *> \verbatim *> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] PERM *> \verbatim *> PERM is DOUBLE PRECISION array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] PIV *> \verbatim *> PIV is INTEGER array, dimension (NMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (NMAX*3) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DCHKPS( DOTYPE, NN, NVAL, NNB, NBVAL, NRANK, RANKVAL, $ THRESH, TSTERR, NMAX, A, AFAC, PERM, PIV, WORK, $ RWORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. DOUBLE PRECISION THRESH INTEGER NMAX, NN, NNB, NOUT, NRANK LOGICAL TSTERR * .. * .. Array Arguments .. DOUBLE PRECISION A( * ), AFAC( * ), PERM( * ), RWORK( * ), $ WORK( * ) INTEGER NBVAL( * ), NVAL( * ), PIV( * ), RANKVAL( * ) LOGICAL DOTYPE( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) INTEGER NTYPES PARAMETER ( NTYPES = 9 ) * .. * .. Local Scalars .. DOUBLE PRECISION ANORM, CNDNUM, RESULT, TOL INTEGER COMPRANK, I, IMAT, IN, INB, INFO, IRANK, IUPLO, $ IZERO, KL, KU, LDA, MODE, N, NB, NERRS, NFAIL, $ NIMAT, NRUN, RANK, RANKDIFF CHARACTER DIST, TYPE, UPLO CHARACTER*3 PATH * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ) CHARACTER UPLOS( 2 ) * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, DERRPS, DLACPY, DLATB5, $ DLATMT, DPST01, DPSTRF, XLAENV * .. * .. Scalars in Common .. INTEGER INFOT, NUNIT LOGICAL LERR, OK CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, CEILING * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Double precision' PATH( 2: 3 ) = 'PS' NRUN = 0 NFAIL = 0 NERRS = 0 DO 100 I = 1, 4 ISEED( I ) = ISEEDY( I ) 100 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL DERRPS( PATH, NOUT ) INFOT = 0 CALL XLAENV( 2, 2 ) * * Do for each value of N in NVAL * DO 150 IN = 1, NN N = NVAL( IN ) LDA = MAX( N, 1 ) NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * IZERO = 0 DO 140 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 140 * * Do for each value of RANK in RANKVAL * DO 130 IRANK = 1, NRANK * * Only repeat test 3 to 5 for different ranks * Other tests use full rank * IF( ( IMAT.LT.3 .OR. IMAT.GT.5 ) .AND. IRANK.GT.1 ) $ GO TO 130 * RANK = CEILING( ( N * DBLE( RANKVAL( IRANK ) ) ) $ / 100.D+0 ) * * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 120 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) * * Set up parameters with DLATB5 and generate a test matrix * with DLATMT. * CALL DLATB5( PATH, IMAT, N, TYPE, KL, KU, ANORM, $ MODE, CNDNUM, DIST ) * SRNAMT = 'DLATMT' CALL DLATMT( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, RANK, KL, KU, UPLO, A, $ LDA, WORK, INFO ) * * Check error code from DLATMT. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'DLATMT', INFO, 0, UPLO, N, $ N, -1, -1, -1, IMAT, NFAIL, NERRS, $ NOUT ) GO TO 120 END IF * * Do for each value of NB in NBVAL * DO 110 INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) * * Compute the pivoted L*L' or U'*U factorization * of the matrix. * CALL DLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) SRNAMT = 'DPSTRF' * * Use default tolerance * TOL = -ONE CALL DPSTRF( UPLO, N, AFAC, LDA, PIV, COMPRANK, $ TOL, WORK, INFO ) * * Check error code from DPSTRF. * IF( (INFO.LT.IZERO) $ .OR.(INFO.NE.IZERO.AND.RANK.EQ.N) $ .OR.(INFO.LE.IZERO.AND.RANK.LT.N) ) THEN CALL ALAERH( PATH, 'DPSTRF', INFO, IZERO, $ UPLO, N, N, -1, -1, NB, IMAT, $ NFAIL, NERRS, NOUT ) GO TO 110 END IF * * Skip the test if INFO is not 0. * IF( INFO.NE.0 ) $ GO TO 110 * * Reconstruct matrix from factors and compute residual. * * PERM holds permuted L*L^T or U^T*U * CALL DPST01( UPLO, N, A, LDA, AFAC, LDA, PERM, LDA, $ PIV, RWORK, RESULT, COMPRANK ) * * Print information about the tests that did not pass * the threshold or where computed rank was not RANK. * IF( N.EQ.0 ) $ COMPRANK = 0 RANKDIFF = RANK - COMPRANK IF( RESULT.GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, RANK, $ RANKDIFF, NB, IMAT, RESULT NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 110 CONTINUE * 120 CONTINUE 130 CONTINUE 140 CONTINUE 150 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', RANK =', I3, $ ', Diff =', I5, ', NB =', I4, ', type ', I2, ', Ratio =', $ G12.5 ) RETURN * * End of DCHKPS * END