numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/dchkpt.f 16215B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
*> \brief \b DCHKPT
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
*                          A, D, E, B, X, XACT, WORK, RWORK, NOUT )
*
*       .. Scalar Arguments ..
*       LOGICAL            TSTERR
*       INTEGER            NN, NNS, NOUT
*       DOUBLE PRECISION   THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            DOTYPE( * )
*       INTEGER            NSVAL( * ), NVAL( * )
*       DOUBLE PRECISION   A( * ), B( * ), D( * ), E( * ), RWORK( * ),
*      $                   WORK( * ), X( * ), XACT( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DCHKPT tests DPTTRF, -TRS, -RFS, and -CON
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          The matrix types to be used for testing.  Matrices of type j
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER
*>          The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*>          NVAL is INTEGER array, dimension (NN)
*>          The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*>          NNS is INTEGER
*>          The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*>          NSVAL is INTEGER array, dimension (NNS)
*>          The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is DOUBLE PRECISION
*>          The threshold value for the test ratios.  A result is
*>          included in the output file if RESULT >= THRESH.  To have
*>          every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*>          TSTERR is LOGICAL
*>          Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (NMAX*2)
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (NMAX*2)
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (NMAX*2)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
*>          where NSMAX is the largest entry in NSVAL.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*>          XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension
*>                      (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension
*>                      (max(NMAX,2*NSMAX))
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*>          NOUT is INTEGER
*>          The unit number for output.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
*  =====================================================================
      SUBROUTINE DCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
     $                   A, D, E, B, X, XACT, WORK, RWORK, NOUT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      LOGICAL            TSTERR
      INTEGER            NN, NNS, NOUT
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            NSVAL( * ), NVAL( * )
      DOUBLE PRECISION   A( * ), B( * ), D( * ), E( * ), RWORK( * ),
     $                   WORK( * ), X( * ), XACT( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
      INTEGER            NTYPES
      PARAMETER          ( NTYPES = 12 )
      INTEGER            NTESTS
      PARAMETER          ( NTESTS = 7 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ZEROT
      CHARACTER          DIST, TYPE
      CHARACTER*3        PATH
      INTEGER            I, IA, IMAT, IN, INFO, IRHS, IX, IZERO, J, K,
     $                   KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
     $                   NRHS, NRUN
      DOUBLE PRECISION   AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
      DOUBLE PRECISION   RESULT( NTESTS ), Z( 3 )
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DASUM, DGET06, DLANST
      EXTERNAL           IDAMAX, DASUM, DGET06, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           ALAERH, ALAHD, ALASUM, DCOPY, DERRGT, DGET04,
     $                   DLACPY, DLAPTM, DLARNV, DLATB4, DLATMS, DPTCON,
     $                   DPTRFS, DPTT01, DPTT02, DPTT05, DPTTRF, DPTTRS,
     $                   DSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Scalars in Common ..
      LOGICAL            LERR, OK
      CHARACTER*32       SRNAMT
      INTEGER            INFOT, NUNIT
*     ..
*     .. Common blocks ..
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEEDY / 0, 0, 0, 1 /
*     ..
*     .. Executable Statements ..
*
      PATH( 1: 1 ) = 'Double precision'
      PATH( 2: 3 ) = 'PT'
      NRUN = 0
      NFAIL = 0
      NERRS = 0
      DO 10 I = 1, 4
         ISEED( I ) = ISEEDY( I )
   10 CONTINUE
*
*     Test the error exits
*
      IF( TSTERR )
     $   CALL DERRGT( PATH, NOUT )
      INFOT = 0
*
      DO 110 IN = 1, NN
*
*        Do for each value of N in NVAL.
*
         N = NVAL( IN )
         LDA = MAX( 1, N )
         NIMAT = NTYPES
         IF( N.LE.0 )
     $      NIMAT = 1
*
         DO 100 IMAT = 1, NIMAT
*
*           Do the tests only if DOTYPE( IMAT ) is true.
*
            IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
     $         GO TO 100
*
*           Set up parameters with DLATB4.
*
            CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
     $                   COND, DIST )
*
            ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
            IF( IMAT.LE.6 ) THEN
*
*              Type 1-6:  generate a symmetric tridiagonal matrix of
*              known condition number in lower triangular band storage.
*
               SRNAMT = 'DLATMS'
               CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
     $                      ANORM, KL, KU, 'B', A, 2, WORK, INFO )
*
*              Check the error code from DLATMS.
*
               IF( INFO.NE.0 ) THEN
                  CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N, KL,
     $                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
                  GO TO 100
               END IF
               IZERO = 0
*
*              Copy the matrix to D and E.
*
               IA = 1
               DO 20 I = 1, N - 1
                  D( I ) = A( IA )
                  E( I ) = A( IA+1 )
                  IA = IA + 2
   20          CONTINUE
               IF( N.GT.0 )
     $            D( N ) = A( IA )
            ELSE
*
*              Type 7-12:  generate a diagonally dominant matrix with
*              unknown condition number in the vectors D and E.
*
               IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
*
*                 Let D and E have values from [-1,1].
*
                  CALL DLARNV( 2, ISEED, N, D )
                  CALL DLARNV( 2, ISEED, N-1, E )
*
*                 Make the tridiagonal matrix diagonally dominant.
*
                  IF( N.EQ.1 ) THEN
                     D( 1 ) = ABS( D( 1 ) )
                  ELSE
                     D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
                     D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
                     DO 30 I = 2, N - 1
                        D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
     $                           ABS( E( I-1 ) )
   30                CONTINUE
                  END IF
*
*                 Scale D and E so the maximum element is ANORM.
*
                  IX = IDAMAX( N, D, 1 )
                  DMAX = D( IX )
                  CALL DSCAL( N, ANORM / DMAX, D, 1 )
                  CALL DSCAL( N-1, ANORM / DMAX, E, 1 )
*
               ELSE IF( IZERO.GT.0 ) THEN
*
*                 Reuse the last matrix by copying back the zeroed out
*                 elements.
*
                  IF( IZERO.EQ.1 ) THEN
                     D( 1 ) = Z( 2 )
                     IF( N.GT.1 )
     $                  E( 1 ) = Z( 3 )
                  ELSE IF( IZERO.EQ.N ) THEN
                     E( N-1 ) = Z( 1 )
                     D( N ) = Z( 2 )
                  ELSE
                     E( IZERO-1 ) = Z( 1 )
                     D( IZERO ) = Z( 2 )
                     E( IZERO ) = Z( 3 )
                  END IF
               END IF
*
*              For types 8-10, set one row and column of the matrix to
*              zero.
*
               IZERO = 0
               IF( IMAT.EQ.8 ) THEN
                  IZERO = 1
                  Z( 2 ) = D( 1 )
                  D( 1 ) = ZERO
                  IF( N.GT.1 ) THEN
                     Z( 3 ) = E( 1 )
                     E( 1 ) = ZERO
                  END IF
               ELSE IF( IMAT.EQ.9 ) THEN
                  IZERO = N
                  IF( N.GT.1 ) THEN
                     Z( 1 ) = E( N-1 )
                     E( N-1 ) = ZERO
                  END IF
                  Z( 2 ) = D( N )
                  D( N ) = ZERO
               ELSE IF( IMAT.EQ.10 ) THEN
                  IZERO = ( N+1 ) / 2
                  IF( IZERO.GT.1 ) THEN
                     Z( 1 ) = E( IZERO-1 )
                     E( IZERO-1 ) = ZERO
                     Z( 3 ) = E( IZERO )
                     E( IZERO ) = ZERO
                  END IF
                  Z( 2 ) = D( IZERO )
                  D( IZERO ) = ZERO
               END IF
            END IF
*
            CALL DCOPY( N, D, 1, D( N+1 ), 1 )
            IF( N.GT.1 )
     $         CALL DCOPY( N-1, E, 1, E( N+1 ), 1 )
*
*+    TEST 1
*           Factor A as L*D*L' and compute the ratio
*              norm(L*D*L' - A) / (n * norm(A) * EPS )
*
            CALL DPTTRF( N, D( N+1 ), E( N+1 ), INFO )
*
*           Check error code from DPTTRF.
*
            IF( INFO.NE.IZERO ) THEN
               CALL ALAERH( PATH, 'DPTTRF', INFO, IZERO, ' ', N, N, -1,
     $                      -1, -1, IMAT, NFAIL, NERRS, NOUT )
               GO TO 100
            END IF
*
            IF( INFO.GT.0 ) THEN
               RCONDC = ZERO
               GO TO 90
            END IF
*
            CALL DPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
     $                   RESULT( 1 ) )
*
*           Print the test ratio if greater than or equal to THRESH.
*
            IF( RESULT( 1 ).GE.THRESH ) THEN
               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $            CALL ALAHD( NOUT, PATH )
               WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
               NFAIL = NFAIL + 1
            END IF
            NRUN = NRUN + 1
*
*           Compute RCONDC = 1 / (norm(A) * norm(inv(A))
*
*           Compute norm(A).
*
            ANORM = DLANST( '1', N, D, E )
*
*           Use DPTTRS to solve for one column at a time of inv(A),
*           computing the maximum column sum as we go.
*
            AINVNM = ZERO
            DO 50 I = 1, N
               DO 40 J = 1, N
                  X( J ) = ZERO
   40          CONTINUE
               X( I ) = ONE
               CALL DPTTRS( N, 1, D( N+1 ), E( N+1 ), X, LDA, INFO )
               AINVNM = MAX( AINVNM, DASUM( N, X, 1 ) )
   50       CONTINUE
            RCONDC = ONE / MAX( ONE, ANORM*AINVNM )
*
            DO 80 IRHS = 1, NNS
               NRHS = NSVAL( IRHS )
*
*           Generate NRHS random solution vectors.
*
               IX = 1
               DO 60 J = 1, NRHS
                  CALL DLARNV( 2, ISEED, N, XACT( IX ) )
                  IX = IX + LDA
   60          CONTINUE
*
*           Set the right hand side.
*
               CALL DLAPTM( N, NRHS, ONE, D, E, XACT, LDA, ZERO, B,
     $                      LDA )
*
*+    TEST 2
*           Solve A*x = b and compute the residual.
*
               CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
               CALL DPTTRS( N, NRHS, D( N+1 ), E( N+1 ), X, LDA, INFO )
*
*           Check error code from DPTTRS.
*
               IF( INFO.NE.0 )
     $            CALL ALAERH( PATH, 'DPTTRS', INFO, 0, ' ', N, N, -1,
     $                         -1, NRHS, IMAT, NFAIL, NERRS, NOUT )
*
               CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
               CALL DPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
     $                      RESULT( 2 ) )
*
*+    TEST 3
*           Check solution from generated exact solution.
*
               CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
     $                      RESULT( 3 ) )
*
*+    TESTS 4, 5, and 6
*           Use iterative refinement to improve the solution.
*
               SRNAMT = 'DPTRFS'
               CALL DPTRFS( N, NRHS, D, E, D( N+1 ), E( N+1 ), B, LDA,
     $                      X, LDA, RWORK, RWORK( NRHS+1 ), WORK, INFO )
*
*           Check error code from DPTRFS.
*
               IF( INFO.NE.0 )
     $            CALL ALAERH( PATH, 'DPTRFS', INFO, 0, ' ', N, N, -1,
     $                         -1, NRHS, IMAT, NFAIL, NERRS, NOUT )
*
               CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
     $                      RESULT( 4 ) )
               CALL DPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
     $                      RWORK, RWORK( NRHS+1 ), RESULT( 5 ) )
*
*           Print information about the tests that did not pass the
*           threshold.
*
               DO 70 K = 2, 6
                  IF( RESULT( K ).GE.THRESH ) THEN
                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                  CALL ALAHD( NOUT, PATH )
                     WRITE( NOUT, FMT = 9998 )N, NRHS, IMAT, K,
     $                  RESULT( K )
                     NFAIL = NFAIL + 1
                  END IF
   70          CONTINUE
               NRUN = NRUN + 5
   80       CONTINUE
*
*+    TEST 7
*           Estimate the reciprocal of the condition number of the
*           matrix.
*
   90       CONTINUE
            SRNAMT = 'DPTCON'
            CALL DPTCON( N, D( N+1 ), E( N+1 ), ANORM, RCOND, RWORK,
     $                   INFO )
*
*           Check error code from DPTCON.
*
            IF( INFO.NE.0 )
     $         CALL ALAERH( PATH, 'DPTCON', INFO, 0, ' ', N, N, -1, -1,
     $                      -1, IMAT, NFAIL, NERRS, NOUT )
*
            RESULT( 7 ) = DGET06( RCOND, RCONDC )
*
*           Print the test ratio if greater than or equal to THRESH.
*
            IF( RESULT( 7 ).GE.THRESH ) THEN
               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $            CALL ALAHD( NOUT, PATH )
               WRITE( NOUT, FMT = 9999 )N, IMAT, 7, RESULT( 7 )
               NFAIL = NFAIL + 1
            END IF
            NRUN = NRUN + 1
  100    CONTINUE
  110 CONTINUE
*
*     Print a summary of the results.
*
      CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
 9999 FORMAT( ' N =', I5, ', type ', I2, ', test ', I2, ', ratio = ',
     $      G12.5 )
 9998 FORMAT( ' N =', I5, ', NRHS=', I3, ', type ', I2, ', test(', I2,
     $      ') = ', G12.5 )
      RETURN
*
*     End of DCHKPT
*
      END