numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/dgbt02.f 7217B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
*> \brief \b DGBT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
*                          LDB, RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            KL, KU, LDA, LDB, LDX, M, N, NRHS
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * ),
*                          RWORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DGBT02 computes the residual for a solution of a banded system of
*> equations op(A)*X = B:
*>    RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ),
*> where op(A) = A or A**T, depending on TRANS, and EPS is the
*> machine epsilon.
*> The norm used is the 1-norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations:
*>          = 'N':  A    * X = B  (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of subdiagonals within the band of A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of superdiagonals within the band of A.  KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of columns of B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          The original matrix A in band storage, stored in rows 1 to
*>          KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*>          The computed solution vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  If TRANS = 'N',
*>          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*>          On entry, the right hand side vectors for the system of
*>          linear equations.
*>          On exit, B is overwritten with the difference B - A*X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  IF TRANS = 'N',
*>          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)),
*>          where LRWORK >= M when TRANS = 'T' or 'C'; otherwise, RWORK
*>          is not referenced.
*> \endverbatim
*
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          The maximum over the number of right hand sides of
*>          norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
*  =====================================================================
      SUBROUTINE DGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
     $                   LDB, RWORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            KL, KU, LDA, LDB, LDX, M, N, NRHS
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * ),
     $                   RWORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I1, I2, J, KD, N1
      DOUBLE PRECISION   ANORM, BNORM, EPS, TEMP, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            DISNAN, LSAME
      DOUBLE PRECISION   DASUM, DLAMCH
      EXTERNAL           DASUM, DISNAN, DLAMCH, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGBMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if N = 0 pr NRHS = 0
*
      IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = ZERO
      IF( LSAME( TRANS, 'N' ) ) THEN
*
*        Find norm1(A).
*
         KD = KU + 1
         DO 10 J = 1, N
            I1 = MAX( KD+1-J, 1 )
            I2 = MIN( KD+M-J, KL+KD )
            IF( I2.GE.I1 ) THEN
               TEMP = DASUM( I2-I1+1, A( I1, J ), 1 )
               IF( ANORM.LT.TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
            END IF
   10    CONTINUE
      ELSE
*
*        Find normI(A).
*
         DO 12 I1 = 1, M
            RWORK( I1 ) = ZERO
   12    CONTINUE
         DO 16 J = 1, N
            KD = KU + 1 - J
            DO 14 I1 = MAX( 1, J-KU ), MIN( M, J+KL )
               RWORK( I1 ) = RWORK( I1 ) + ABS( A( KD+I1, J ) )
   14       CONTINUE
   16    CONTINUE
         DO 18 I1 = 1, M
            TEMP = RWORK( I1 )
            IF( ANORM.LT.TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
   18    CONTINUE
      END IF
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
         N1 = N
      ELSE
         N1 = M
      END IF
*
*     Compute B - op(A)*X
*
      DO 20 J = 1, NRHS
         CALL DGBMV( TRANS, M, N, KL, KU, -ONE, A, LDA, X( 1, J ), 1,
     $               ONE, B( 1, J ), 1 )
   20 CONTINUE
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*
      RESID = ZERO
      DO 30 J = 1, NRHS
         BNORM = DASUM( N1, B( 1, J ), 1 )
         XNORM = DASUM( N1, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   30 CONTINUE
*
      RETURN
*
*     End of DGBT02
*
      END