numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/dget04.f | 4602B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
*> \brief \b DGET04 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DGET04( N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID ) * * .. Scalar Arguments .. * INTEGER LDX, LDXACT, N, NRHS * DOUBLE PRECISION RCOND, RESID * .. * .. Array Arguments .. * DOUBLE PRECISION X( LDX, * ), XACT( LDXACT, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DGET04 computes the difference between a computed solution and the *> true solution to a system of linear equations. *> *> RESID = ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ), *> where RCOND is the reciprocal of the condition number and EPS is the *> machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows of the matrices X and XACT. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of the matrices X and XACT. NRHS >= 0. *> \endverbatim *> *> \param[in] X *> \verbatim *> X is DOUBLE PRECISION array, dimension (LDX,NRHS) *> The computed solution vectors. Each vector is stored as a *> column of the matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[in] XACT *> \verbatim *> XACT is DOUBLE PRECISION array, dimension( LDX, NRHS ) *> The exact solution vectors. Each vector is stored as a *> column of the matrix XACT. *> \endverbatim *> *> \param[in] LDXACT *> \verbatim *> LDXACT is INTEGER *> The leading dimension of the array XACT. LDXACT >= max(1,N). *> \endverbatim *> *> \param[in] RCOND *> \verbatim *> RCOND is DOUBLE PRECISION *> The reciprocal of the condition number of the coefficient *> matrix in the system of equations. *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is DOUBLE PRECISION *> The maximum over the NRHS solution vectors of *> ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DGET04( N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER LDX, LDXACT, N, NRHS DOUBLE PRECISION RCOND, RESID * .. * .. Array Arguments .. DOUBLE PRECISION X( LDX, * ), XACT( LDXACT, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I, IX, J DOUBLE PRECISION DIFFNM, EPS, XNORM * .. * .. External Functions .. INTEGER IDAMAX DOUBLE PRECISION DLAMCH EXTERNAL IDAMAX, DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * * Quick exit if N = 0 or NRHS = 0. * IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if RCOND is invalid. * EPS = DLAMCH( 'Epsilon' ) IF( RCOND.LT.ZERO ) THEN RESID = 1.0D0 / EPS RETURN END IF * * Compute the maximum of * norm(X - XACT) / ( norm(XACT) * EPS ) * over all the vectors X and XACT . * RESID = ZERO DO 20 J = 1, NRHS IX = IDAMAX( N, XACT( 1, J ), 1 ) XNORM = ABS( XACT( IX, J ) ) DIFFNM = ZERO DO 10 I = 1, N DIFFNM = MAX( DIFFNM, ABS( X( I, J )-XACT( I, J ) ) ) 10 CONTINUE IF( XNORM.LE.ZERO ) THEN IF( DIFFNM.GT.ZERO ) $ RESID = 1.0D0 / EPS ELSE RESID = MAX( RESID, ( DIFFNM / XNORM )*RCOND ) END IF 20 CONTINUE IF( RESID*EPS.LT.1.0D0 ) $ RESID = RESID / EPS * RETURN * * End of DGET04 * END