numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/dpst01.f | 8009B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
*> \brief \b DPST01 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM, * PIV, RWORK, RESID, RANK ) * * .. Scalar Arguments .. * DOUBLE PRECISION RESID * INTEGER LDA, LDAFAC, LDPERM, N, RANK * CHARACTER UPLO * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), * $ PERM( LDPERM, * ), RWORK( * ) * INTEGER PIV( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DPST01 reconstructs a symmetric positive semidefinite matrix A *> from its L or U factors and the permutation matrix P and computes *> the residual *> norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or *> norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ), *> where EPS is the machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> symmetric matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> The original symmetric matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N) *> \endverbatim *> *> \param[in] AFAC *> \verbatim *> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N) *> The factor L or U from the L*L' or U'*U *> factorization of A. *> \endverbatim *> *> \param[in] LDAFAC *> \verbatim *> LDAFAC is INTEGER *> The leading dimension of the array AFAC. LDAFAC >= max(1,N). *> \endverbatim *> *> \param[out] PERM *> \verbatim *> PERM is DOUBLE PRECISION array, dimension (LDPERM,N) *> Overwritten with the reconstructed matrix, and then with the *> difference P*L*L'*P' - A (or P*U'*U*P' - A) *> \endverbatim *> *> \param[in] LDPERM *> \verbatim *> LDPERM is INTEGER *> The leading dimension of the array PERM. *> LDAPERM >= max(1,N). *> \endverbatim *> *> \param[in] PIV *> \verbatim *> PIV is INTEGER array, dimension (N) *> PIV is such that the nonzero entries are *> P( PIV( K ), K ) = 1. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is DOUBLE PRECISION *> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) *> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) *> \endverbatim *> *> \param[in] RANK *> \verbatim *> RANK is INTEGER *> number of nonzero singular values of A. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM, $ PIV, RWORK, RESID, RANK ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. DOUBLE PRECISION RESID INTEGER LDA, LDAFAC, LDPERM, N, RANK CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), $ PERM( LDPERM, * ), RWORK( * ) INTEGER PIV( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. DOUBLE PRECISION ANORM, EPS, T INTEGER I, J, K * .. * .. External Functions .. DOUBLE PRECISION DDOT, DLAMCH, DLANSY LOGICAL LSAME EXTERNAL DDOT, DLAMCH, DLANSY, LSAME * .. * .. External Subroutines .. EXTERNAL DSCAL, DSYR, DTRMV * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute the product U'*U, overwriting U. * IF( LSAME( UPLO, 'U' ) ) THEN * IF( RANK.LT.N ) THEN DO 110 J = RANK + 1, N DO 100 I = RANK + 1, J AFAC( I, J ) = ZERO 100 CONTINUE 110 CONTINUE END IF * DO 120 K = N, 1, -1 * * Compute the (K,K) element of the result. * T = DDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) AFAC( K, K ) = T * * Compute the rest of column K. * CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC, $ LDAFAC, AFAC( 1, K ), 1 ) * 120 CONTINUE * * Compute the product L*L', overwriting L. * ELSE * IF( RANK.LT.N ) THEN DO 140 J = RANK + 1, N DO 130 I = J, N AFAC( I, J ) = ZERO 130 CONTINUE 140 CONTINUE END IF * DO 150 K = N, 1, -1 * Add a multiple of column K of the factor L to each of * columns K+1 through N. * IF( K+1.LE.N ) $ CALL DSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1, $ AFAC( K+1, K+1 ), LDAFAC ) * * Scale column K by the diagonal element. * T = AFAC( K, K ) CALL DSCAL( N-K+1, T, AFAC( K, K ), 1 ) 150 CONTINUE * END IF * * Form P*L*L'*P' or P*U'*U*P' * IF( LSAME( UPLO, 'U' ) ) THEN * DO 170 J = 1, N DO 160 I = 1, N IF( PIV( I ).LE.PIV( J ) ) THEN IF( I.LE.J ) THEN PERM( PIV( I ), PIV( J ) ) = AFAC( I, J ) ELSE PERM( PIV( I ), PIV( J ) ) = AFAC( J, I ) END IF END IF 160 CONTINUE 170 CONTINUE * * ELSE * DO 190 J = 1, N DO 180 I = 1, N IF( PIV( I ).GE.PIV( J ) ) THEN IF( I.GE.J ) THEN PERM( PIV( I ), PIV( J ) ) = AFAC( I, J ) ELSE PERM( PIV( I ), PIV( J ) ) = AFAC( J, I ) END IF END IF 180 CONTINUE 190 CONTINUE * END IF * * Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A). * IF( LSAME( UPLO, 'U' ) ) THEN DO 210 J = 1, N DO 200 I = 1, J PERM( I, J ) = PERM( I, J ) - A( I, J ) 200 CONTINUE 210 CONTINUE ELSE DO 230 J = 1, N DO 220 I = J, N PERM( I, J ) = PERM( I, J ) - A( I, J ) 220 CONTINUE 230 CONTINUE END IF * * Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or * ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ). * RESID = DLANSY( '1', UPLO, N, PERM, LDAFAC, RWORK ) * RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS * RETURN * * End of DPST01 * END